基于改进Faster R-CNN的高铁扣件检测算法
作者:
作者单位:

作者简介:

裴莹玲(1996—),女,硕士研究生,研究方向为目标检测。E-mail:2089398456@qq.com

通讯作者:

中图分类号:

U213;TP39

基金项目:

江西省教育厅科学技术研究重点项目(GJJ200603);江西省重点研发计划重点项目(20202BBEL53001)


High-Speed Railway Fastener Detection Algorithm Based on Improved Faster R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高铁无砟轨道中扣件发生松动,导致高铁扣件发生偏移或丢失的问题,提出一种基于改进 Faster R-CNN 的高铁扣件检测算法。 在特征提取网络中引入可变形卷积,构建可变形残差卷积块,使特征提取过程更加集中于扣件区域,实现扣件状态的精确提取;并采用 Alpha-IoU 作为目标回归损失函数提高高铁扣件的回归精度。 实验结果表明,该算法提高了高铁扣件的检测精度,相比于其他算法,能更准确地进行扣件定位和状态检测。

    Abstract:

    Aiming at deflection or loss of high-speed railway fasteners caused by the loose fasteners in the ballastless track of high-speed railway, this paper proposes a high-speed railway fastener detection algorithm based on improved Faster R-CNN. Deformable convolution was introduced in the feature extraction network to build deformable residual convolution block(DRCB), which makes the feature extraction process more focused on the fastener region and achieves the accurate extraction of fastener state; and Alpha-IoU was used as the target regression loss function to improve the regression accuracy of high-speed railway fasteners. The experimental results show that the algorithm proposed improves the detection accuracy of high-speed railway fasteners and can perform fastener localization and state detection more accurately than other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

裴莹玲,罗晖,张诗慧,李佳敏,徐杰.基于改进Faster R-CNN的高铁扣件检测算法[J].华东交通大学学报,2023,40(1):75-81.
Pei Yingling, Luo Hui, Zhang Shihui, Li Jiamin, Xu Jie. High-Speed Railway Fastener Detection Algorithm Based on Improved Faster R-CNN[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2023,40(1):75-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-23
  • 出版日期:
关闭