基于专家先验信息的轨道不平顺预测研究
作者:
作者单位:

作者简介:

刘文海(1997—),男,硕士研究生,研究方向为铁路基础设施养护与维修。E-mail:1051936036@qq.com。

通讯作者:

中图分类号:

U216

基金项目:

国家自然科学基金项目(52178430)


Research on Track Irregularity Prediction Based on Expert Prior Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究在缺乏历史数据时如何准确预测轨道不平顺的发展趋势。 提出了一种可以考虑专家先验信息的轨道不平顺预测方法。 通过问卷调查法获取专家先验信息并构建具有先验信息的贝叶斯线性回归模型,然后使用马尔科夫链蒙特卡洛方法对模型参数进行求解,最后对轨道不平顺的幅值进行预测和误差分析并对比了不同模型在缺乏历史数据时的预测效果。 结果表明:该方法可以准确预测短期内有砟轨道不平顺的发展趋势,相关系数均在 0.9 以上。 在缺乏历史数据的情况下,贝叶斯线性回归模型也能保持较高预测精度 R2 为 0.88,比传统线性回归模型高 17%。

    Abstract:

    In order to study how to accurately predict the development trend of track irregularity in the absence of historical data, a track irregularity prediction method that can consider the prior information of experts is proposed. The questionnaire survey method was used to obtain expert experience information and a Bayesian linear regression model with prior information was built up. Then the Markov chain Monte Carlo method was used to solve the model parameters. Finally, the amplitude of track irregularity was predicted and error analysis was conducted, and the prediction effects of different models in the absence of historical data were compared. The results show that the method can accurately predict the development trend of the track irregularity in the short term, and the correlation coefficients are all above 0.9. In the absence of historical data, the Bayesian linear regression model can also maintain a high prediction accuracy and the R2 is 0.88, which is 17% higher than the traditional linear regression model.

    参考文献
    相似文献
    引证文献
引用本文

刘文海,李再帏,何越磊.基于专家先验信息的轨道不平顺预测研究[J].华东交通大学学报,2023,40(3):24-32.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-24
  • 出版日期: