采用改进多尺度符号动力学熵的铁路机车轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

张龙(1980—),男,教授,博士,研究方向为装备服役性能监测、诊断与智能运维。E-mail:longzh@126.com。

中图分类号:

U279;TH133.33

基金项目:

国家自然科学基金项目(51665013);江西省自然科学基金项目(20212BAB204007,20224ACB204017)


Fault Diagnosis of Railway Locomotive Bearings Using Improved Multiscale Symbolic Dynamic Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对铁路机车轴承在真实复杂环境下故障特征难以提取而导致故障诊断困难的问题,提出一种改进多尺度符号动力学熵(IMSDE)的铁路机车轴承故障诊断方法。 首先,通过邻域滑移均值化的方式改进多尺度符号动力学熵,克服了传统粗粒化造成的熵值偏差缺陷;然后,利用 IMSDE 充分提取振动信号在不同尺度下的关键故障特征;最后,结合极限学习机(ELM)实现铁路轴承不同故障类型与程度的识别。 在此基础上,分别进行了 3 组试验分析。 结果表明,对人为构造的轴承故障和工程实际产生的轴承故障,该方法都具有精准的故障识别效果,对比其他 4 种方法故障识别率更高,验证了该方法具有一定的工程实际应用价值。

    Abstract:

    Aiming at the problem that it is difficult to extract the fault features of railway locomotive bearings in a real complex environment, which leads to the difficulty of fault diagnosis, an improved multiscale symbolic dynamic entropy(IMSDE) fault diagnosis method is proposed. Firstly, the MSDE is improved by utilizing neighborhood slip averaging, which overcomes the defects of entropy deviation caused by traditional coarse -graining. Then, IMSDE is used to fully extract the key fault features of vibration signals at different scales. Finally, the identification of different fault types and degrees of railway bearings is achieved by combining with an extreme learning machine(ELM). On this basis, three separate sets of tests were analyzed. The results show that the method has an accurate fault identification effect for both artificially constructed bearing faults and bearing faults generated by engineering reality, and the fault identification rate is higher compared with the other four methods, which verifies that the method has a certain value of practical application in engineering.

    参考文献
    相似文献
    引证文献
引用本文

张龙,刘皓阳,肖乾.采用改进多尺度符号动力学熵的铁路机车轴承故障诊断[J].华东交通大学学报,2023,40(5):32-40.
Zhang Long, Liu Haoyang, Xiao Qian. Fault Diagnosis of Railway Locomotive Bearings Using Improved Multiscale Symbolic Dynamic Entropy[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2023,40(5):32-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-16
  • 出版日期: