基于深度学习的绝缘子故障检测仿真研究
作者:
作者单位:

作者简介:

张长乐(1996—),男,硕士研究生,研究方向为电力系统故障辩识。E-mail:350587231@qq.com。

通讯作者:

中图分类号:

TN946.7;[U8]

基金项目:


Simulation Study on Insulator Fault Detection Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机巡检中采集到的绝缘子图片受干扰严重、检测精度低的问题,在 YOLOv5s 算法的基础上进行优化,基于改进后的 YOLOv5s 算法进行了绝缘子故障检测的仿真研究。通过在颈部网络添加 CBAM 注意力模块、运用 K-means 聚类重新计算先验框大小、采用 MetaAconC 作为激活函数 3 种措施改进了原算法,并基于 Python 进行了实验结果分析。 实验结果表明本方案算法平均精度均值 mAP 达到了 96.7%,对比原 YOLOv5s 模型,平均精度均值 mAP 提升 3.3%;且方案算法训练出的权重文件大小仅有 15.1 M,仅比原 YOLOv5s 大了 0.1 M,仍然保持了轻量化的特点,在智能巡检工作的部署上有良好前景。

    Abstract:

    Aiming at the problem of serious interference and low detection accuracy of insulator pictures collected in UAV patrol inspection,the optimization is carried out based on YOLOv5s algorithm,and the simulation research of insulator fault detection is carried out based on the improved YOLOv5s algorithm. The original algorithm is improved by adding CBAM attention module to the neck network,using K-means clustering to recalculate the size of a priori frame,and using MetaAconC as the activation function. The experimental results are analyzed based on Python. The experimental results show that the advantage of the proposed scheme is that the average accuracy of the algorithm mAP reaches 96.7%,which is 3.3% higher than the original YOLOv5s model; In addition,the weight file size of the algorithm training in this scheme is only 15.1 M,which is only 0.1 M larger than the original YOLOv5s. With the lightweight feature,the proposed scheme has a good prospect in the deployment of intelligent patrol work.

    参考文献
    相似文献
    引证文献
引用本文

张长乐,金钧.基于深度学习的绝缘子故障检测仿真研究[J].华东交通大学学报,2023,40(5):41-48.
Zhang Changle, Jin Jun. Simulation Study on Insulator Fault Detection Based on Deep Learning[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2023,40(5):41-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-16
  • 出版日期: