基于改进SSD算法的结构表观裂缝病害检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51664014);江西省研究生创新专项资金项目(2022-S510)


Structural Apparent Crack Disease Detection Based on Improved SSD Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将 SSD 网络原有 Backbone 替换为轻量级的 MobileNetV2 网络,同时引入通道注意力机制 SENet 结构对特征图不同通道施加不同权重,使之能更有利于检测。 利用 3 种不同环境下裂缝数据进行融合,构建新数据集,使网络能更优学习到不同环境下裂缝对象,进一步提高网络的识别能力,加快网络的推理速度。 原 SSD 网络中 Anchor 是按照通用数据集进行设定的,而进行结构表面裂缝检测时关注的数据类型较为单一,运用 K-means 算法聚类出适合裂缝数据集的 Anchor,加快模型收敛且较原模型有更高的准确性。 最终,改进后算法的精确率较先前增加了 3.6%,检测速度是先前的 2 倍多,可满足实时检测,算法可为实际工程中检测结构表观裂缝病害提供一种更快速、更精确的检测方法。

    Abstract:

    The original backbone of the SSD network was replaced with a lightweight MobileNetV2 network. At the same time, the channel attention mechanism SENet structure was introduced to apply different weights to different channels of the feature map, making it more conducive to detection. Using the crack data in three different environments to fuse, a new data set was built so that the network can better learn crack objects in different environments, further improving the network′s recognition ability and speeding up the network′s reasoning speed. The anchor in the original SSD network were set according to the general data set, and the data type concerned in the detection of structural surface cracks was relatively single. The K-means algorithm was used to cluster the anchor suitable for the crack data set, which speeded up the convergence of the model and was more efficient than the original one. The model had higher accuracy. Finally, the accuracy of the improved algorithm is 3.6% higher than that of the previous one, and the detection speed is as much as 2 times that of the previous one, which is enough to meet real -time detection, the algorithm can provide a faster and more accurate detection method for the detection of structural apparent cracks in practical engineering.

    参考文献
    相似文献
    引证文献
引用本文

刘永胜,熊吉光,游志杰,吴勋杰,翟天正.基于改进SSD算法的结构表观裂缝病害检测[J].华东交通大学学报,2023,40(6):1-7.
Liu Yongsheng, Xiong Jiguang, You Zhijie, Wu Xunjie, Zhai Tianzheng. Structural Apparent Crack Disease Detection Based on Improved SSD Algorithm[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2023,40(6):1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-01
  • 出版日期:
关闭