基于小波包能量谱与改进BP神经网络的铁路扣件松脱检测算法研究
作者:
作者单位:

作者简介:

吴送英(1997—),男,博士研究生,研究方向为结构健康检测。E-mail:1969640885@qq.com。

通讯作者:

中图分类号:

U213.2

基金项目:

国家重点研发计划(2022YFB2602200);国家自然科学基金资助项目(51968025);江西省交通运输厅科技重点项目(2022Z0003);江西省教育厅科学技术研究重点项目(GJJ210603,GJJ171287,GJJ204613);江西省科技厅自然科学基金项目(20202BAB204027)


Research on Detection Algorithm of Railway Fastener Looseness Based on Wavelet Packet Energy Spectrum and Improved BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现铁路扣件在服役过程中松脱位置及松脱程度的准确检测,提出一种基于小波包能量谱与改进 BP 神经网络的铁路扣件松脱检测算法。 首先,参照现行规范,在实地设计了 7 种铁路扣件不同松脱工况,并依次采集各工况下所对应的钢轨垂向振动加速度信号;随后,对采集到的钢轨垂向振动加速度信号进行 7 层 dB40 小波包分解,获取各工况下对应的小波包节点能量比数据信息,在此基础上,从距离和维度两个角度出发,设计了一个向量相异系数指标(VDC)用以实现松脱扣件的定位;此外,依据数据特征,采用粒子群优化算法对 BP 神经网络进行改进,构建 PSO-BP 铁路扣件松脱程度检测模型,并进行参数敏感性分析。 研究结果表明:健康状态下铁路扣件的 VDC 最小值为 0.17,最大值为 0.41,明显小于各松脱状态下铁路扣件的 VDC 值,据此,可实现对单个和多个松脱扣件的准确定位;构建的 PSO-BP 铁路扣件松脱程度检测模型可以实现扣件松脱程度的准确检测,且当隐含层中神经元数目设置为 20 时,模型检测效果最优,对应识别准确率为 98.66%。

    Abstract:

    In order to accurately detect the looseness position and degree of railway fasteners during service, a looseness detection algorithm of railway fasteners based on wavelet packet energy spectrum and improved BP neural network is proposed. First of all, referring to the current specifications, seven different loosening conditions of railway fasteners are designed on the spot, and the corresponding vertical vibration acceleration signals of rail under each condition are collected in turn; Then, the collected vertical vibration acceleration signal of the rail is decomposed by 7 layers of dB40 wavelet packet to obtain the corresponding wavelet packet node energy ratio data information under each working condition. On this basis, a vector dissimilarity coefficient index (VDC) is designed from the perspective of distance and dimension to realize the positioning of loose fasteners; In addition, according to the characteristics of the data, the particle swarm optimization algorithm is used to improve the BP neural network, build the PSO-BP railway fastener looseness detection model, and conduct parameter sensitivity analysis. The research results show that the minimum value of VDC of railway fastenings in healthy state is 0.17, and the maximum value is 0.41, which is significantly less than the VDC value of railway fastenings in each loose state. Based on this, accurate positioning of single and multiple loose fastenings can be achieved; The constructed PSO-BP railway fastener looseness detection model can achieve accurate detection of fastener looseness. When the number of neurons in the hidden layer is set to 20, the model detection effect is the best, and the corresponding recognition accuracy is 98.66%.

    参考文献
    相似文献
    引证文献
引用本文

吴送英,刘林芽,万强华,江家明,宋瑞.基于小波包能量谱与改进BP神经网络的铁路扣件松脱检测算法研究[J].华东交通大学学报,2023,40(6):69-78.
Wu Songying, Liu Linya, Wan Qianghua, Jiang Jiaming, Song Rui. Research on Detection Algorithm of Railway Fastener Looseness Based on Wavelet Packet Energy Spectrum and Improved BP Neural Network[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2023,40(6):69-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期: