基于Transformer的交通标志检测模型研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

严丽平(1980—),女,副教授,博士,硕士生导师,研究方向为智能交通、人工智能。E-mail:csyanliping@163.com。

中图分类号:

TU391.41;U463.6

基金项目:

国家自然科学基金项目(62362031,62262022);江西省自然科学基金项目(20224BAB202021)


Research on Traffic Sign Detection Model Based on Transformer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的】为了解决在复杂环境下,对小目标特征困难以及对小目标检测效果不佳等问题,提出了一种基于 Transformer的交通标志检测基干模型。【方法】通过充分利用卷积和 Transformer的优势,构建了一种注意力融合的多尺度特征提取基干模型,能够使基干网络以全局上下文信息为支撑,有选择地增强有用信息的特征,并抑制不重要的特征。此外,为了在增强特征融合的同时防止网络退化,还加入了类池连接。最后,在TT100K数据集上进行实验。【结果】实验结果表明,以该模型为骨干的元体系结构取得了最高84%的mAP,与基线模型相比mAP最大提升约7%。【结论】模型在提高特征提取效果的同时,也为交通标志检测提供了一种新的思路。

    Abstract:

    Objective】In order to solve the difficulties such as small target feature extraction, a transformerbased traffic sign detection model was proposed.【Method】Through fully utilizing the advantages of convolution and Transformer, a multi-scale feature extraction backbone model was established with attention fusion, which could enable the backbone network to selectively enhance the features of useful information and suppress the unimportant ones with the support of global context information. In addition, pooling-like connection are incorporated in order to prevent network degradation while enhancing feature fusion. Finally, experiments were conducted on the TT100K dataset.【Result】The experimental results show that the meta-architecture with this model as the backbone achieves the highest mAP of 84%, and the maximum improvement of mAP is about 7% compared with the baseline model.【Conclusion】The model provides a new idea for traffic sign detection while improving feature extraction.

    参考文献
    相似文献
    引证文献
引用本文

严丽平,张文剥,宋凯,蔡彧,王静,徐嘉悦.基于Transformer的交通标志检测模型研究[J].华东交通大学学报,2024,41(1):61-69.
Yan Liping, Zhang Wenbo, Song Kai, Cai Yu, Wang Jing, Xu Jiayue. Research on Traffic Sign Detection Model Based on Transformer[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2024,41(1):61-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-20
  • 出版日期: