基于稀疏矢量声阵列的噪声源识别方法研究
DOI:
作者:
作者单位:

1.华东交通大学轨道交通基础设施性能监测与保障国家重点实验室,江西 南昌 330013 ; 2.华东交通大学交通运输工程学院,江西 南昌 330013 ; 3.安徽建筑大学安徽省建筑声环境重点实验室,安徽 合肥 230601

作者简介:

景文倩(1987—),女,副教授,博士,硕士生导师,国家自然科学基金青年/地区科学基金获得者,江西省“双千计划”引进类创新领军青年人才,研究方向为轨道交通振动、噪声测试。E-mail:jwqtkhz@126.com。

通讯作者:

中图分类号:

U216;TB535

基金项目:

国家自然科学基金项目(12264015);江西省“双千计划”引进类创新领军人才长期(青年)项目(jxsq2023101062);江西省自然科学基金资助项目(20242BAB25036);安徽省建筑声环境重点实验室开放课题基金项目(AAE2023G01)


Research on Noise Source Identification Method Based on Sparse Vector Acoustic Array
Author:
Affiliation:

1.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013 , China ; 2.School of Transportation Engineering, East China Jiaotong University, Nanchang 330013 , China ; 3.Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes, Anhui Jianzhu University, Hefei 230601 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的】为了提高质点振速的重建精度,保证声源识别的准确性,【方法】采用质点振速测量替代传统的声压测量,然后将矢量传感器与稀疏采样及稀疏正则化相结合,建立一个基于稀疏矢量声阵列的压缩等效源-近场声全息技术模型(CESM-v), 并开展数值仿真和实验研究。通过质点振速重建、等效源源强重建、误差计算等多角度分析,将文章提出的CESM-v模型与传统的等效源-近场声全息技术(ESM)模型和现有的CESM-p模型进行对比。【结果】CESM-v模型总是优于另外两个模型,在稀疏采样条件下可获得媲美传统ESM充足采样条件下的质点振速重建效果,且比CESM-p模型具有更高更稳定的质点振速重建精度。仿真和实验结果均表明,CESM-v模型具有更好的稳定性和可靠性,在少量采样点条件下依然可获得较好的质点振速重建结果,从而保证声源识别的准确性。【结论】凭借优越的声场重构稳健性,CESM-v模型可推广至轨道交通等实际工程中,应用于噪声源识别及故障诊断。

    Abstract:

    Objective】In order to improve the reconstruction accuracy of the particle velocity and ensure the ac curacy of source identification, 【Method】this paper proposes a compressed equivalent source based-NAH mod el with the sparse acoustic vector sensor array CESM-v by substituting the particle velocity measurement for the traditional pressure measurement and combining the acoustic vector sensor with the sparse sampling and sparse regularization. Several numerical simulations and experiments were carried out to exam the efficiency of the pro posed model. Through multiple analysis of the particle velocity reconstruction, the equivalent source strength re construction and the error calculation, the proposed CESM-v model was compared with the traditional equivalent source based-NAH with particle velocity measurement (ESM-v) and the existed CESM-p model. 【Results】The proposed CESM-v model always performs better than the other two models. Even though using sparse sam pling, the CESM-v model can generate comparable effect of the particle velocity reconstruction to that of tradi tional ESM with adequate sampling, and can give higher and more stable accuracy in particle velocity recon struction than that of the CESM-p model. In short, both simulation and experimental results show that the CESM-v model has better stability and reliability, can obtain good particle velocity reconstruction results with a small number of sampling points, and then the accuracy of sound source identification can be ensured. 【Conclusion】With the robustness of sound field reconstruction, the CESM-v model can be extended to practical projects such as rail transportation for noise source identification and fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

景文倩,曾相龙,叶玲. 基于稀疏矢量声阵列的噪声源识别方法研究[J]. 华东交通大学学报,2024,41(5):105-114.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-26
  • 出版日期: