参数优化的图卷积门控循环网络地铁客流预测
DOI:
作者:
作者单位:

福建理工大学交通运输学院,福建 福州 350118

作者简介:

张阳(1983—),男,教授,博士,研究方向为铁路客流预测。E-mail:zhang_yang1983@163.com。

通讯作者:

中图分类号:

U293.5

基金项目:

福建省自然科学基金项目(2023J01946)


Parameter Optimization of Graph Convolution Gated Recurrent Neural Network for Subway Passenger Flow Prediction
Author:
Affiliation:

School of Transportation, Fujian University of Technology, Fuzhou 350118 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    充分挖掘地铁网络相关站点间客流的空间关联性对地铁客流预测精度的提升有积极作用。由于地铁各站点之间的空间相关性难以学习并传递,捕捉并量化客流数据的空间规律十分困难。提出一种改进的图卷积门控循环神经网络地铁客流预测模型,通过整合多元时空数据提升模型处理不同数据类型的能力,采用基于Tent混沌映射和莱维飞行扰动策略的蜘蛛黄蜂优化算法动态调整模型结构参数,以优化门控循环神经网络的隐层结构。实验结果表明,在工作日模型的预测精度明显高于周末,相较于周末,工作日的均方根误差、平均绝对误差、平均绝对百分误差分别降低了13个百分点、12个百分点、0.08个百分点。参数优化门控循环神经网络的隐层结构可以获得更好的收敛效果,预测精确度更高。

    Abstract:

    Fully exploiting the spatial correlation of passenger flow between related stations in the subway network has a positive effect on the improvement of subway passenger flow prediction accuracy. Capturing and quantifying spatial patterns in passenger flow data is difficult due to the difficulty of learning and transferring spatial correlations between metro stations. An improved graph-convolution gated recurrent neural network (GCGRU) metro passenger flow prediction model was proposed to enhance the model’s ability to handle different data types by integrating multivariate spatiotemporal data. The spider wasp optimisation (SWO) algorithm based on Tent chaotic mapping and Levy flight disturbance strategy was used to dynamically adjust the model structural parameters in order to optimize the hidden layer structure of the gated recurrent neural network. The experimental results show that the prediction accuracy of the model is significantly higher on weekdays than on weekends, and the root mean square error, mean absolute error, and mean absolute percentage error are reduced by 13 percentage points, 12 percentage points, and 0.08 percentage points, respectively, during weekdays compared to weekends. Dynamic optimization of the hidden structure of gated recurrent networks can lead to better convergence of the prediction model and higher prediction accuracy

    参考文献
    相似文献
    引证文献
引用本文

张阳,李露玢,陈燕玲. 参数优化的图卷积门控循环网络地铁客流预测[J]. 华东交通大学学报,2025,42(3):77- 86.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-01
  • 出版日期:
关闭