基于1DResAE网络模型的车轮多边形检测研究
DOI:
作者:
作者单位:

1.华东交通大学轨道交通基础设施性能监测与保障国家重点实验室,江西 南昌 330013 ;2.华东交通大学轨道车辆智能运维技术与装备江西省重点实验室,江西 南昌 330013 ;3.华东交通大学机车车辆智能运维铁路行业重点实验室,江西 南昌 330013 ;4.中铁物总运维科技有限公司,北京 100071

作者简介:

林凤涛(1977—),男,教授,博士,博士生导师,江西省“双千计划”科技创新领军人才,江西省主要学科学术和技术带头人,研究方向为列车安全技术。E-mail:ecjtu411@163.com。

通讯作者:

中图分类号:

U269

基金项目:

国家自然科学基金项目(52065021);江西省“双千计划”科技创新领军人才项目(S2021GDKX1442);江西省教育厅科学技术研究项目(GJJ210641);华东交通大学载运工具与装备教育部重点实验室自主课题(KLCEZ2022-10);中国国家铁路集团有限公司科技开发重点项目(N2023G021)


Research on Wheel Polygon Detection Based on 1DResAE Network Model
Author:
Affiliation:

1.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University,Nanchang 330013 , China ; 2.Jiangxi Provincial Key Laboratory of Intelligent Operation and Maintenance Technology andEquipment for Rail Vehicles, East China Jiaotong University, Nanchang 330013 , China ; 3.Key Laboratory of RailwayIndustry of Intelligent Operation and Maintenance for locomotive Vehicle, East China Jiaotong University, Nanchang 330013 ,China ; 4.China Railway Total Transportation and Maintenance Technology Co., Ltd., Beijing 10071, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习在振动信号识别中具有准确率高、精确率高的优势,但是车轮多边形标签数据难以大量获取,无法满足常规神经网络模型的训练需求。现有解决少样本问题的方法是将时域数据转化为频域数据,然而这种方法在时频域转换时会致使部分数据特征丢失。针对此问题,提出一种基于1DResAE网络模型的车轮多边形检测方法。该模型可在不进行振动信号时频域转换的情况下,通过对时域信号的无监督学习、特征提取和监督学习完成对列车车轮多边形的检测。通过融合一维卷积、残差网络和自编码器,形成了可提取和学习复杂的一维振动信号特征的一维深度神经网络;根据自编码器中编码器所提取和学习的特征,分类器利用少量标签数据进行监督学习,完成列车车轮多边形的模式识别。通过小比例轮轨对滚实验台采集的数据进行实验验证表明:该方法的检测精确率为98.971%,误差小且分类效果突出。对于车轮多边形检测任务,1DResAE能够有效检测出车轮多边形的阶数,具有一定的实用性。

    Abstract:

    Deep learning technology offers advantages in vibration signal recognition with high accuracy and precision. However, acquiring a large number of labeled data for polygonal wheel detection is challenging, which fails to meet the training requirements of conventional neural network models. Existing methods to address the issue of small sample sizes often convert time-domain data into frequency-domain data, but this can re-sult in the loss of certain data features during the time-frequency conversion. To address this issue, a polygonal wheel detection method based on the 1DResAE deep neural network model is proposed. This model completes the detection of polygonal train wheels by unsupervised learning, feature extraction, and supervised learning of time-domain signals without the need for time-frequency conversion of vibration signals. By integrating one-dimensional convolution, residual networks, and autoencoders, a one-dimensional deep neural network is formed, capable of extracting and learning complex one-dimensional vibration signal features. Based on the features extracted and learned by the encoder in the autoencoder, the classifier performs supervised learning with a small amount of labeled data to achieve pattern recognition of polygonal train wheels. Experimental verification using data collected from a small-scale wheel-rail rolling test bench demonstrated that the detection accuracy of this method is 98.971%, with low error and outstanding classification performance. For the task of polygonal wheel detection, the 1DResAE model effectively detects the polygonal order of wheels and has practical applicability.

    参考文献
    相似文献
    引证文献
引用本文

林凤涛,倪鹏辉,杜磊,等. 基于1DResAE方法的车轮多边形检测研究[J]. 华东交通大学学报,2025,42(3):96- 107.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-01
  • 出版日期:
关闭