基于改进YOLOv8n的轻量化路面裂缝检测算法
DOI:
作者:
作者单位:

1.同济大学道路与交通工程教育部重点实验室,上海 201804 ;2.招商局集团重庆交通科研设计院有限公司,重庆 400067

作者简介:

杨烨(1983—),男,正高级工程师,博士,研究方向为道路与机场工程。E-mail:7428217@qq.com。

通讯作者:

中图分类号:

TP391.4;U416

基金项目:

国家重点研发计划项目(2022YFC3002603);中国科协青年人才托举工程(2023QNRC001)


Lightweight Road Crack Detection Algorithm Based on Improved YOLOv8n
Author:
Affiliation:

1.The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804 , China ;2.China Merchants Chongqing Communications Technology Research & Design Institute Co., LTD., Chongqing 400067 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有路面裂缝检测模型在识别精度和推理速度方面的不足,提出一种改进的网络模型YOLOv8-Crack。该模型在 YOLOv8n的基础上进行了多项改进:引入NWD损失函数,降低对目标框长宽比的依赖,从而提升对不规则形状裂缝的检测能力;采用Slimneck轻量化结构,显著降低模型参数量和计算复杂度,加快推理速度;嵌入CA模块,增强关键特征信息的提取能力。在RDD2022开源数据集上的实验结果表明,与YOLOv8n相比,YOLOv8-Crack模型的精确率,召回率,平均精度分别提高了1.8%,3.7%,2.6%;参数量和计算量分别降低了6.7%和11.0%。

    Abstract:

    To address the limitations in detection accuracy and inference speed in current road crack detection models, this paper proposes a novel YOLOv8-Crack network model. Based on YOLOv8n, this model incorporates multiple key structural optimizations, including the introduction of the NWD loss function to reduce dependency on aspect ratios of bounding boxes, thus improving detection capability for irregularly shaped cracks. The Slimneck lightweight structure is used to significantly reduce the number of parameters and computational complexity of the model, and accelerate the inference speed. The model also integrates a CA module to enhance the capture of critical feature information. Experimental results on the open-source dataset RDD2022 demonstrate that the YOLOv8-Crack model achieves improvements over the original YOLOv8n, with precision, recall, and mean average precision increased by 1.8%, 3.7%, and 2.6%; respectively, while parameters and computation are reduced by 6.7% and 11.0%.

    参考文献
    相似文献
    引证文献
引用本文

杨烨,徐霈,徐峰. 基于改进 YOLOv8n的轻量化路面裂缝检测算法[J]. 华东交通大学学报,2025,42(3):117- 126.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-01
  • 出版日期:
关闭