基于深度学习的列车制动盘剩余使用寿命预测研究
DOI:
作者:
作者单位:

华东交通大学机电与车辆工程学院,江西 南昌 330013

作者简介:

通讯作者:

朱海燕(1975—),男,教授,博士,博士生导师,研究方向为高速列车系统动力学及疲劳强度。E-mail:zhupetrelcao@163.com。

中图分类号:

U270.35;TP183

基金项目:


Research on Prediction of Remaining Useful Life of Train Brake Disc Based on Deep Learning
Author:
Affiliation:

School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现制动盘剩余使用寿命的精准预测,保障列车制动安全并优化经济性维护,提出基于自注意力机制与长短期记忆网络融合并以裂纹扩展寿命为划分依据的预测模型。首先采集制动盘试验数据并标定工况,建立热力耦合有限元模型获取仿真数据集;其次构建Time-GAN神经网络,通过双层LSTM生成器与物理约束判别器增强数据,其分布相似性、均方根误差与决定系数均显著优于传统模型;最后提出BiLSTM-SA融合预测模型,利用双向LSTM和自注意力机制捕捉时序依赖与关键特征,在单一扩展型裂纹预测中较传统LSTM、TCN-LSTM的 RMSE分别下降49.8%、46.5%,复杂工况下RMSE与Score分别下降25.5%、51.1%,显著提升预测精度与鲁棒性。该研究可为高速列车制动盘的状态监测与预防性维护提供可靠的技术方案。

    Abstract:

    To achieve accurate prediction of the remaining useful life (RUL) of brake discs, ensure train braking safety, and optimize economical maintenance, this paper proposes a prediction model based on the fusion of selfattention mechanism and long short-term memory network (BiLSTM- SA), which takes the crack propagation life as the division basis. Firstly, the test data of brake discs are collected and the working conditions are calibrated, and a thermal-mechanical coupling finite element model is established to obtain the simulation dataset. Secondly, a Time-GAN neural network is constructed, which enhances data through a double-layer LSTM generator and a physical constraint discriminator. Its distribution similarity, root mean square error and coefficient of determination are significantly better than traditional models. Finally, the BiLSTM-SA fusion prediction model is proposed, which uses bidirectional LSTM and self-attention mechanism to capture temporal dependencies and key features. In the prediction of single expanding cracks, the RMSE is reduced by 49.8% and 46.5% compared with the traditional LSTM and TCN-LSTM, respectively. In complex working conditions, the RMSE and Score are optimized by 25.5% and 51.1% , respectively, significantly improving the prediction accuracy and robustness.This study can provide a reliable technical solution for condition monitoring and preventive maintenance of highspeed train brake discs.

    参考文献
    相似文献
    引证文献
引用本文

朱海燕,许晋华,徐晨钊,等. 基于深度学习的列车制动盘剩余使用寿命预测研究[J]. 华东交通大学学报, 2025,42(4):48-61.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
关闭