ES-YOLO:基于细节特征增强与冗余特征抑制的小目标检测方法
DOI:
作者:
作者单位:

1.华东交通大学信息与软件工程学院,江西 南昌 330013 ;2.华东交通大学土木建筑学院,江西 南昌 330013 ;3.中国铁路武汉局集团有限公司电务部,湖北 武汉 430071

作者简介:

朱志亮(1988—),男,副教授,博士,硕士生导师,研究方向为计算机视觉和人机交互。E-mail:rj_zzl@ecjtu.edu.cn。

通讯作者:

中图分类号:

TP311

基金项目:

国家重点研发计划项目(2023YFB2603900);中国铁路武汉局集团有限公司科技研究开发计划课题(24D03)


ES-YOLO: Small Object Detection Method Based on Detail Feature Enhancement and Redundant Feature Suppression
Author:
Affiliation:

1.School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013 , China ;2.School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013 , China ;3.Electric Department of China Railway Wuhan Bureau Group Co., LTD., Wuhan 430071 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低空小目标在多层下采样过程中细节特征丢失的问题,提出一种基于细节特征增强与冗余特征抑制的小目标检测模型ES-YOLO。该方法以轻量化YOLOv5s为基础,构建由空间细节增强模块(SDE)与冗余特征抑制模块(RFS)组成的双重特征优化机制。SDE通过动态上采样与反卷积上采样协同实现尺度自适应的空间细节精细恢复与结构一致性重建,增强小目标纹理与边界信息;RFS从通道与空间多维度建模特征依赖关系,抑制背景噪声与冗余响应,提高特征纯净度与目标显著性。实验结果表明,ES-YOLO在VisDrone2019数据集上的mAP@0.5与mAP@[0.5:0.95]较YOLOv5s分别提升12.97个百分点与9.22个百分点,计算量GFLOPs仅为YOLOv8m的38.59%。

    Abstract:

    To address the problem of detail feature loss of low-altitude small objects during multi-layer down-sampling, a small object detection model ES-YOLO is proposed, based on detail feature enhancement and redundant feature suppression. The method is built upon the lightweight YOLOv5s framework and constructs a dual-feature optimization mechanism consisting of spatial detail enhancement (SDE) and redundant feature suppression (RFS) modules. SDE collaborates dynamic upsampling with transposed convolution upsampling to achieve scale-adaptive fine recovery of spatial details and structural consistency reconstruction, enhancing small object texture and boundary information. RFS models feature dependencies across both channel and spatial dimensions to suppress background noise and redundant responses, improving feature purity and object saliency. Experimental results show that ES-YOLO achieves improvements of 12.97 percentage point and 9.22 percentage point in mAP@0.5and mAP@[0.5:0.95], respectively, compared to YOLOv5s on the VisDrone2019 dataset. The proposed model requires only 38.59% of the GFLOPs of YOLOv8m, achieving a significant reduction in computational cost.

    参考文献
    相似文献
    引证文献
引用本文

朱志亮,黄欣荣,刘怡,等. ES-YOLO:基于细节特征增强与冗余特征抑制的小目标检测方法[J]. 华东交通大学学报,2025,42(6):42-50.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-15
  • 出版日期:
关闭