斜拉索基于DD-ACMD的在线时变索力识别
DOI:
作者:
作者单位:

1.福建省高速技术咨询有限公司,福建 福州 350018 ;2.福州大学土木工程学院,福建 福州 350108

作者简介:

杨杰(1972—),男,高级工程师,研究方向为桥梁检测和结构健康监测。E-mail:634455345@qq.com。

通讯作者:

中图分类号:

U442.5

基金项目:

福建省工业引导性(重点)项目(2023H0049)


Online Time-Varying Cable Force Identification of Stay Cables Based on DD-ACMD
Author:
Affiliation:

1.Fujian Expressway Technology Consulting Co., Ltd., Fuzhou 350018 , China ;2.College of Civil Engineering, Fuzhou University, Fuzhou 350108 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现斜拉桥斜拉索时变索力的在线准确获取,基于数据驱动的自适应调频模式分解(DD-ACMD)算法,提出了一种斜拉索在线时变索力实时识别新方法。该方法采用滑动窗口技术更新斜拉索振动信号,通过振动信号的功率谱密度分析确定其先验信息,确定目标模态分量;之后采用DD-ACMD算法识别拉索的振动瞬时频率,并通过轴向加载梁理论计算斜拉索的时变索力。通过斜拉索数值算例检验该方法的准确性,结果表明,在高噪声水平下时变索力识别平均误差为0.45%,最大误差为1.84%。

    Abstract:

    To achieve accurate online acquisition of time-varying cable forces in cable-stayed bridges, a new method for real-time identification of online time-varying cable forces is proposed based on the data-driven adaptive chirp mode decomposition (DD-ACMD) algorithm. This method adopts the sliding window technique to update the vibration signal of the inclined cable, and determines its prior information and target modal components through the power spectrum density (PSD) analysis of the vibration signal. Afterwards, the DD-ACMD algorithm was used to identify the instantaneous frequency of the cable vibration, and the time-varying cable force of the inclined cable was calculated using the axial loading beam theory. The accuracy of the method was tested by a numerical case of inclined cable, and the results showed that the average error in identifying the time-varying cable forces under high noise level is 0.45%, with a maximum error of 1.84%.

    参考文献
    相似文献
    引证文献
引用本文

杨杰,卞涵禛,刘迅,等. 斜拉索基于DD-ACMD的在线时变索力识别[J]. 华东交通大学学报,2025,42(6):51- 57.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-15
  • 出版日期:
关闭