冰雪环境下基于CNN-BiGRU-MHA的汽车异常驾驶行为识别
DOI:
作者:
作者单位:

东北林业大学土木与交通学院,黑龙江 哈尔滨 150000

作者简介:

通讯作者:

裴玉龙(1962—),男,教授,博士,研究方向为智能交通与管理。E-mail:peiyulong@nefu.edu.cn。

中图分类号:

U268.6

基金项目:

黑龙江省重点研发项目(JD22A014)


Anomalous Driving Behavior Recognition of Vehicles Based on CNN-BiGRU-MHA in Ice and Snow Environments
Author:
Affiliation:

School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150000 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为加强对冰雪环境下汽车异常驾驶行为的鉴别与检测,提出了一种将CNN-BiGRU与MHA结合,使用数据驱动的汽车异常驾驶行为识别方法。通过LAIF模型获取异常驾驶数据,结合冰雪环境下行车特点与数据特征,构建异常驾驶行为指标, 表征急加速、急减速、急转弯、急变道、蛇形驾驶、打滑6种异常驾驶行为,引入ADASYN平衡数据集。与其他模型进行对比分析,CNN-BiGRU-MHA识别模型的准确率为96.34%,整体优于其他对比模型,说明该模型能够有效识别冰雪环境下汽车异常驾驶行为,为异常驾驶行为的预警提供了理论依据。

    Abstract:

    To enhance the monitoring and detection of abnormal driving behavior of vehicles in snow and ice conditions,this paper proposes a data-driven method for identifying abnormal driving behaviors by integrating multichannel CNN-BiGRU with MHA. Abnormal driving data are obtained by LAIF model, combined with driving characteristics and data features under ice and snow environments, abnormal driving behavior indicators are constructed to characterize 6 kinds of abnormal driving behavior, namely rapid acceleration, rapid deceleration, rapid turning, rapid lane change, serpentine driving and skidding, and the ADASYN is introduced. The model proposed in this paper is compared and analysed with other models.The CNN-BiGRU-MHA detection model has an overall accuracy of 96.34%, which is better than other detection models indicating that the model can effectively detect the abnormal driving behavior of cars in ice and snow environments, and provides a theoretical basis for early warning of abnormal driving behavior.

    参考文献
    相似文献
    引证文献
引用本文

裴玉龙,范怡辰. 冰雪环境下基于CNN-BiGRU-MHA的汽车异常驾驶行为识别[J]. 华东交通大学学报,2025,42 (6):91-100.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-15
  • 出版日期:
关闭