Vol. 17 No. 2 Jun. 2000

文章编号:1005-0523(2000)02-0051-04

常温两相厌氧法处理养鸡场离心废水

胡锋平

(华东交通大学 土木建筑学院, 江西 南昌 330013)

摘要:在常温 25[°]C 采用两相厌氧法对养鸡场离心废水进行处理,结果表明:进水 COD_{cr} 为 18~300 mg/L, 系统容积负荷 17.26 kg COD_{cr}/m^3 · d, 水力停留时间 25.47 h, COD_{cr} 去除率为 76.13%, BOD_5 去除率为 87.76%, 产气率为 0.410 m 3 /kg COD_{cr} 19.

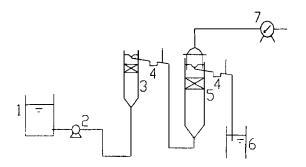
关 键 词:两相法; UBF 反应器; 厌氧处理; 鸡粪废水

中图分类号: X506 文献标识码: A

0 引言

在商品经济和菜蓝子工程建设推动下,城郊集约化蛋鸡场的发展非常迅速 19.在蛋鸡场,鸡粪与拌落的残食,饮食滴落水及粪槽冲刷水掺合形成鸡粪混合液 19.鸡粪混合液离心后固体回收,通过自然高温好氧发酵作为饲料的可行性研究^[1]已被证实并用于工程实践 19旦鸡粪混合液离心出水含有较高的有机物和悬浮固体,不宜直接排放 19.我们曾在 25℃条件下采用单相 UBF反应器对上海县某养鸡场离心出水进行处理试验^[2] 19结果表明:当进水 COD_{cc}为 18 200 mg/L,容积负荷 16.70 kg COD_{cc}/m³·d,水力停留时间 26.15 h,COD_{cc}去除率为 74.08%,BOD₅去除率为 83.78%,产气率为 0.518 m³/去除 kgCOD_{cc},运行状况良好 19为养鸡场污水处理工程提供设计参数,本研究在 25℃条件下采用二相 UBF 工艺对上海县某养鸡场离心水进行处理试验 19.

1 试验条件及测试方法


1.1 试验装置

本试验采用试验装置及工艺流程图如图 119二相工艺先酸化,后甲烷化19酸化相是一内径为 8 cm,高 36 cm,有效容积 1.4 L 的圆柱形有机玻璃管,甲烷相是一内径为 10 cm,高 118 cm,有效容积 7.3 L 的园柱形有机玻璃管 19.6

2个反应器均采用 UBF 反应器,其内部功能,从下到上依次为污泥床、悬浮区、滤层、澄清区和气室 5部分,滤层由 5片组合式填料片按上下片距 4 cm 的距离悬挂于上流式厌氧污泥床的悬浮区和澄清区之间 19.反应器设置于木制自控恒温箱中 19.废水在恒温箱内进水管的流进过程中预热,不设专门的加热装置 19.

收稿日期:1999-11-24;修订日期:2000-01-10

作者简介: 胡锋平(1968-), 男, 江西波阳人, 华东交通大学讲师, 工学硕士19.

1-贮水槽;2-蠕动泵;3-产酸相反应器;4-水封 5-产甲烷相反应器;6-出水槽;7-气体流量计 图1试验工艺流程图

1.2 试验用水水质

试验用水取自上海县某集约化养鸡场鸡粪混合液离心出水19.其试验水质如表 119.

			八十 内共1		C/1C/0C	ro mg L)		
项目	$\mathrm{COD}_{\mathrm{cr}}$	BOD5	$NH_3 - N$	VFA	ALK	SS	рН	
数 据	18 ~ 20	9 ~ 10.5	1.5~1.65	4.5~5.5	4~4.5	1.5~2.1	7.0~7.5	

应举混合海室心出水水质

1.3 测试指标及方法

各测试指标及测试方法如下: COD_{er} :快速重铬酸钾法; BOD_{5} :叠氮化钠改良法; NH_{3} = N: 硼酸吸收法;VFA:蒸馏法;ALK:电位滴定法;SS:105 C 称重法;pH:酸度计法;产气量:湿式气体流量计;气体组分:气相色谱法19.

2 试验内容和结果

2.1 污泥培养驯化阶段试验

采用动力学控制是将产酸反应和产甲烷反应分离的一种有效办法,即利用产甲烷菌在水力停留时间较短的产酸器中被"冲洗"而出现的二相分离^[3~4]19.

酸化相污泥选用上海闵行污水处理厂消化中的剩余污泥,该污泥性能不好,先用市售啤酒和养鸡场离心废水配水进行培养驯化,逐渐增加进水中养鸡场离心废水浓度,直到进水全部改为养鸡场离心废水19.

经过一个多月的启动,产酸相出水的 VFA 达到 7×10^3 mg/L 以上,是进水的 1 倍(因该废水存放后,本身会酸化,进水酸化度较高),产酸相的 COD_{cr}去除率为 $10\% \sim 20\%$,气相中的甲烷含量低于 20%,说明产甲烷菌受到抑制,产酸相污泥培养驯化阶段完成 19.

二相法处理养鸡场废水试验在 25℃时单相 UBF 反应器处理鸡粪混合液离心出水试验完成后进行,产甲烷相反应器采用 25℃时单相 UBF 反应器处理鸡粪混合液离心出水的 UBF 反应器,污泥采用原污泥不变,不再进行培养驯化19经产酸相反应器处理后的养鸡场离心出水,直接进入产甲烷相反应器处理 19.

2.2 高负荷稳定运行阶段试验

(进水采用养鸡场离心废水,不经稀释,逐渐增大流量,减小水力停留时间,提高负荷,该阶,

68.8

68.4

796.60

0.49

0.48

0.430

0.410

0.370

段系统负荷从 11.02 kgCOD_{cr}/m³・d 逐渐增加到 20.94 kgCOD_{cr}m³・/d,试验结果如表 219.

				表生		三行的	「段试验				mg	· L
	序留时间 /h	/(kg0	容称负荷 CODer/m³	• d)					$\mathrm{COD}_{\mathrm{cr}}$			
产酸相	系统	产酸相	产甲烷相	系统	产酸进	水	产甲相进		产甲烷 相出水	产酸 相去 除 %	产烷去率%	总去 除率 %
6.45 33. 5.91 30. 4.96 25. 3.92 21. 3.38 17.	82 36.73 86 30.83 55 25.47	74.59 88.75 112.15	11.02 11.93 14.51 17.42 22.04	11.05 12.00 14.28 17.26 20.94	18450 18368 18342 18317 18326	. 56 . 36 . 54	15439 15317 15638 15637 16182	. 54 . 70 . 68	3898.55 3923.53 4152.71 4372.40 5596.98	16.32 16.61 14.74 14.63 11.70	74.74 74.38 73.45 72.04 65.41	78.87 78.64 77.36 76.13 69.46
						рН			$NH_3 - N$			
产酸相进水	产甲烷 相进水	产甲烷相出水	产酸 相去 除率 %	产甲烷炔 法%	总去 除率 %	产酸 相进 水	产甲 产 烷相 烷 进水 出	相	产酸相进水	产甲烷相进力		ーーー 一甲烷 目出水
9764.64 9644.16 9352.16 9187.46 9216.46	7965.99 7944.86 7817.47 7802.91 7904.96	785.04 884.72 1124.5	17.63 2 16.41 5 15.07	90.12 88.68 85.59	91.86 90.54 87.76	7.46 7.38 7.32		3.00 3.14 3.27	1542.36 1566.47 1603.21 1584.37 1604.98	1512.3 1517.4 1532.1 1518.7 1540.4	7 12 6 12 75 12	21.40 96.36 86.27 54.36 17.16
VFA (CH3COOH 計 mg/L) (CaC				ALK CO3 计1	mg/L)			ss	5	酸	沼气 产率 m³/	沼气
产酸相 进水		产甲烷 相出水	产酸相 进水	产甲烷相进力			产酸相 进水	产月相边		酸化率	m°/ kg COD _{cr}	烷含 量 %
4806.32 4831.46			1316.54 1643.21		7 6231. 6 6216.			1160. 1016.		0.48 0.50	0.432 0.425	67.6 69.4

5316.46 7120.30 816.42 4380.76 4287.26 6132.46 1608.36 1241.40 1140.60 0.44 说明:1) 表中产甲烷相进水即产酸相出水;2) 表中数据为稳态运行时的平均值19.

5036.74 7506.09 187.64 4012.32 4162.36 5976.32 1643.60 1104.60 826.70

5127.37 7662.96 168.47 4346.47 4417.56 6136.54 1594.30 1086.70

当容积负荷在 $17.26 \text{ kg COD}_{\text{er}}/\text{m}^3 \cdot \text{d}$ 时,处理效果出现一个折点,小于此负荷,COD $_{\text{er}}$,BOD $_{\text{5}}$ 去除率比较稳定,分别在 $76\% \sim 90\%$ 和 $85\% \sim 90\%$ 左右,超过这个负荷,COD $_{\text{er}}$,BOD $_{\text{5}}$ 去除率明显下降 19故容积负荷 $17.26 \text{ kg COD}_{\text{er}}/\text{m}^3 \cdot \text{d}$ 可作为 25° 条件下二相 UBF 反应器处理养鸡场离心废水的最佳负荷 19.

3 结 论

该废水进水酸化度在 0.26 左右,经酸化后,酸化度可提高到 $0.44 \sim 0.50$,说明尽管该废水在处理之前已酸化,但经酸化相反应器处理后,酸化度可进一步提高,由于该废水中 N 浓度高,缓冲能力强,经酸化后的废水的 pH 值在中性左右,适宜于产甲烷相中微生物的生长繁殖 19.

整个系统处理效果与单相 UBF 反应器处理该种废水相比,对 CODer、BODs 处理效果比单相 UBF。反应器处理效果有所提高,对 SS 的去除比较显著(如表 3) 19. All rights reserved. http://www

表 3	单相与二相 UBF	反应器处理养鸡场离心废水处理效果比较

	容积		$\mathrm{COD}_{\mathrm{cr}}$				SS	沼气产率	沼气甲	
	容积 负荷 kgCODer m・d	水力停 . 留时间 /h	进水	出水	去除率 %	进水	出水	去除率	沼气产率 m³/ kg CODcr	沼气甲 烷含量 %
单相	16.70	26.15	1807.11	4720.08	74.08	1615.00	1296.40	19.73	0.385	64.2
二相	17.26	25.47	18317.54	4372.40	76.13	1643.60	826.70	49.70	0.410	68.4

二相工艺对 SS 去除比较显著的原因是:在酸化相由于大量产酸菌的水解酸化作用,废水中的悬浮固体浓度得到大大降低,这从试验结果(表 2) 中也证实了这一点 19.

氨氮的毒性作用在厌氧处理中经常遇到,与单相 UBF 反应器处理该种废水一样,尽管 NH_3-N 浓度达 1.6×103 mg/L 以上,并没有产生毒性作用 19.这可能与污泥的性能有关 19.

经过两相 IBF 反应器处理后,尽管 COD_{cr} 、 BOD_{5} ,SS 有很大程度的降低,但出水 COD_{cr} 、 BOD_{5} ,SS, NH_{3} -N 浓度还很高,需要经过后续好氧生物处理和脱氮处理后,才能排放 19.

[参考文献]

- [1] 朱锦福·集约化蛋鸡场鸡粪混合液资源化无害化处理[J]·城市环境与城市生态,1992,5(1) 19.
- [2] 朱锦福,胡锋平.上流式厌氧污泥床滤层反应器处理鸡粪混合液离心出水[J].城市环境与城市生态,1993,6(3):6~919.
- [3] 俞汉青等. 盾式填料厌氧处理豆制品废水的试验研究[J]. 中国给水排水, 1993, 9(3): 14~1719.
- [4] 俞汉青,顾国维.两相厌氧工艺应用的评述[J].给水排水,1993,19(7):20~2419.
- [5] 胡锋平等. 常温氨氮对 UBF 反应器抑制作有的试验研究[J]. 华东交通大学学报, 1996, 13(2): 60~64 19.

A Study of Centrifugal Effluent Treatment of Laying-hen Manure Mixing Liquid by Two-phase UBF Reactor at 25°C

HU Feng-ping

(School of Civil Engineering and Architecture East China Jiaotong University Nanchang 330013, China)

Abstract: Study on the treatment of centrifugal effluent from laying-hen manure mixing liquid is presented by two-phase up-flow anaerobic sludge blanket reactor (UBF) at 25°C . The results of the experiment are asfollows: influent COD_{cr} concentration $18.3 \times 10^{3} \text{mg/L}$, volumetric loading rate is $17.26 \text{ kg COD}_{\text{cr}}/\text{m}^3$ • d, hydraulic retention time is 25.47 h, the removal rate of COD_{cr} is 76.13%, that of BOD₅ is 87.76%, and biogas production rate is $0.410 \text{ m}^3/\text{kg COD}_{\text{cr}}$.

Key words: two-phase; UBF reactor; anaerobic treatment; laying-hen manure mixing liquid