Vol. 18 No. 4 2001

文章编号:1005-0523(2001)04-0059-03

转移自映射混沌集的 Hausdorff 维数与测度

汪火云1, 卢建平2

(1.广州大学起义路校区 数学系,广州 510030; 2.华南师范大学 数学系,广州 510631)

摘要:设dP是由概率向量P所诱导的度量,则在符号空间(Σ_{V},dP)中我们有如下结论:存在一个相对于转移自映射 σ 而言的混沌集 C, 使得它的 Hausdorff 维数处处大于零; 设 (S, \mathfrak{P}) 是 (Σ_{I}, d_{P}) 的一个子位移, $d = \dim_{H}(S) > 0$ 且 $H^{d}(S)$ $< \infty$, 如果 $C \subseteq S$ 是 H^d -可测的子位移 \mathfrak{g} 的 Li-Yorke 混沌集,则 $H^d(C) = 0$ (13)

关键词:转移自映射; Hausdorff 维数; Hausdorff 测度; 混沌集合; 符号空间

中图分类号: 0189.1 文献标识码: A

0 引言与结果陈述

设 $N \ge 2, E = \{1, 2, ..., N \}$ 赋予离散拓扑, 令 $E_i = E$, $\forall i \ge 1$ 设 $\Sigma_V = \prod_{i=1}^{\infty} E_i$, 则 Σ_V 是一个紧致的可度量 化空间, 称之为由 N 个符号生成的符号空间(13)设 $P = (P_1, P_2, \dots, P_N)$ 是概率向量, $0 < P_i < 1, \forall i = 1, 2, \dots$ N,在 Σ_V 上定义一个与其拓扑相容的度量 d_P 如下: $\forall_X =_{x_1x_2} \dots, y =_{y_1y_2} \dots \in \Sigma_V$,

$$d_{P}(x,y) = \begin{cases} 0 & x = y \\ 1 & x_{1} \neq y_{1} \\ P_{x_{1}}P_{x_{2}}\cdots P_{x_{k}} & 0 < k = \min \{i \mid x_{i} \neq y_{i}\} - 1 < \infty \end{cases}$$

称 d_P 为概率向量 P 所诱导的度量,如果 P = (1/N, 1/N, ..., 1/N) 为平均概率向量,则其诱导的度量在 本文中就简记为 $d^{(13)}$ 设 σ 表示 Σ_{i} 的转移自映射, 如果 $S \subseteq \Sigma_{i}$ 是一个闭集且 $\sigma(S) \subseteq S$, 则称(S, σ) 为子转移, 其中 $\mathfrak{g} = \mathfrak{o}$ $\mathfrak{g} = \mathfrak{o}$ $\mathfrak{g} = \mathfrak{o}$ $\mathfrak{g} = \mathfrak{g} = \mathfrak{g$ $= \{ x \in S \mid x_1 = i_1, x_2 = i_2, \dots, x_n = i_n \}, 若 [i_1 i_2 \dots i_n]_s \neq \emptyset, 则称之为 S 的长度为 n 的相对柱形, 它是子空间 S 的$ 一个既开又闭的子集[13]本文约定用 $\dim_H(\cdot)$ 和 $H^s(\cdot)$ 分别表示 Hausdorff 维数和 s-维 Hausdorff 测度[13]混 沌是动力系统研究的一个重要的课题,下面我们摘引几个与本文相关的混沌定义(13)

定义 1^{[1]} 设(X,d) 是一个度量空间, $f:X \to X$ 是一个连续映射(13); 是 X 的非空子集(13)如果对于任意 X, $_{v}\in C$, $_{x}\neq _{v}$ 有

 $\lim_{x \to \infty} \inf d(f^{n}(x), f^{n}(y)) = 0 \text{ for } \sup d(f^{n}(x), f^{n}(y)) > 0 \text{ (13)}$

则称 C 对于 f 而言是 Li-Yorke 混沌的(13)

定义 2^{[2,3]} 设(X,d) 是一个度量空间, $f: X \to X$ 是一个连续映射, $C \subseteq X$. 如果对于 C 的任意非空子集 A和任意连续映射 $F:A \to X$,存在一个严格递增的正数数序列 $\{r_i\}$,使得 $\lim_{x \to a} f^{r_i}(x) = F(x)$ 对于任何 $x \in A$ 成 立,则称 C 对于 f 是混沌的(13)

近年来,许多作者对混沌集"大小"进行研究[3.4.5](13)熊金城将分形理论引入动力系统研究,用 Hausdorff 维数和 Hausdorff 测度度量了混沌集合的"大小",得到了如下结论:

定理 $A^{[3]}$ 设 d 是由平均概率向量所诱导的度量,则在($\Sigma_{(i,d)}$)中有如下结论:

(1) 存在一个相对于转移自映射 σ 而言的 Hausdorff 维数处处为 1 的混沌集 C, 即对 Σ 中任一开集 U

收稿日期:2001-03-21

基金基目:国家自然科学基金:(19871031)和广东省自然科学基金(970395)资助课题(13) 作者简为《_{汪火}史[1983] AW, 例,任何制图尺,广州大学副教授(13)

有 $\dim_H(U\cap C)=1$ (13)

- (2) 如果 $C \subseteq (\Sigma_i, d)$ 是转移自映射 o的 H^1 -可测的 Li-Yorke 混沌集,则 $H^1(C) = 0$ (13)
- (3) 如果 $F \subseteq (\Sigma_N, d)$ 是转移自映射 o的混沌集,则 $H^1(F) = 0$ (13)

在文[3]的基础上,本文得到了如下结论:

定理 1 设 $P = (P_1, P_2, ..., P_N)$ 是任一概率向量, $a = \min \{P_i \mid i = 1, 2, ..., N_i\}$, d_P 是由 P 所诱导的度量,则在符号空间(Σ_N , d_P) 中存在一个转移自映射 σ的混沌集 C, 使得对 Σ_N 中任一开集 U, 有: $-\log_a N \le \dim_H (U \cap C) \le 1$ (13)

定理 2 设 $P = (P_1, P_2, ..., P_N)$ 是任一概率向量, d_P 由 P 所诱导的度量, (S, \mathfrak{q}) 是(Σ_{r}, d_P) 的一个子位移, 其中 $\dim_H(S) = d > 0$ 且 $H^d(S) < \infty$ (13)如果 $C \subseteq S$ 是 H^d -可测的子转移 \mathfrak{q} 的 Li-Yorke 混沌集, 则 $H^d(C) = 0$ (13)

2 引 理

引理 1^[6] 设(X_1, d_1) 和(X_2, d_2) 是两个度量空间, $F \subseteq X_1$, 如果 $\forall x, y \in F$, 有 $d_2(f(x), f(y)) \le C(d_1(x, y))^t$, 其中 $C, t \ge 0$, 则有:

- (1) $\forall s > 0, H^{s/t}(f(F)) \leq C^{s/t}H^{s}(F)$
- (2) $\dim_H f(F) \leq (1/t) \cdot \dim_H F$

引理 2 设 d_P 是由概率向量 $P = (P_1, P_2, ..., P_N)$ 所诱导的度量,d 为平均概率向量所诱导的度量(13)设 $f : (\Sigma_X, d) \rightarrow (\Sigma_X, d_P)$ 为恒等映射(即 f(x) = x),则 $\forall x, y \in (\Sigma_X, d)$ 有 $d_P(f(x), f(y)) \geqslant d(x, y)^{-\log_N a}$,其中 $a = \min_{i \in I} \{P_i, i = 1, 2, ..., N\}$ (13)

引理 3 设 d_P 是由概率向量 $P = (P_1, P_2, ..., P_N)$ 所诱导的度量, $a = \min \{P_i \mid i = 1, 2, ..., N_i\}$,d 为平均概率向量所诱导的度量(13)设 $f : (\Sigma_i, d) \rightarrow (\Sigma_i, d_P)$ 为恒等映射,如果 $F \subseteq (\Sigma_i, d)$,则 $\dim_H f(F) \geqslant -\log_a N$ · $\dim_H F(13)$

证明 考虑 f^{-1} : $f(F) \to F$ 的映射,由于 $\forall f(x), f(y) \in f(F)$ (其中 $x, y \in F$),由引理 2 有: $d(f^{-1} \circ f(x), f^{-1} \circ f(y)) = d(x, y) \leq d_P(f(x), f(y))^{-\log_a N}$

由引理 1 知, $\dim_{H}(f^{-1}\circ f(F))=\dim_{H}F$ $\leqslant \frac{1}{-\log_{a}N}\dim_{H}f(F)$, 故 $\dim_{H}f(F)$ $\geqslant -\log_{a}N$ · $\dim_{H}F$ (13)

引理 5 设(X_1 , d_1) 和(X_2 , d_2) 是两个紧致的度量空间,设 $F \subseteq X_1$, $f:F \to X_2$ 是映射,如果存在实数 \triangleright 0,使得 $d_2(f(x),f(y)) = \lambda d_1(x,y)$, $\forall x,y \in F$,则 $\forall d > 0$,有 $H^d(f(F)) = \lambda H^d(F)$ (3)

由 Hausdorff 测度的定义直接可得(13)

引理 6 设 $P = (P_1, P_2, ..., P_N)$ 是概率向量, 令 $b = \max \{P_i \mid i = 1, 2, ..., N\}$, 设(S, g) 是 (Σ_i, d_p) 的子位移, 则 $V \neq 0$,

- (1) 若F \subseteq [i] $_s$,其中 $_i$ \in {1, 2, ..., N },则 $_H$ d ($_{\mathfrak{Q}}(F)$) \geqslant ($_1/b$) d $_{\mathfrak{Q}}(F)$ (13)
- (2) 设 $F \subseteq S$,有 $H^d(\mathfrak{g}(F)) \ge (1/Nb)^d \cdot H^d(F)$ (13)

3 结论的证明

定理 1 的证明(日本) 定理 A 知在(Σ_V , d) 中存在一个混沌集 C, 使得对 Σ_V 中任一开集 U, 有 $\dim_H(U \cup C) = 1$ (13)

设 $f:(\Sigma_{V},d) \rightarrow (\Sigma_{V},d_{P})$ 为恒等映射,由引理 3 及引理 4 得:

 $-\log_a N \cdot \dim_H(C \cap U) \leq \dim_H(C \cap U) \leq \dim_H(\Sigma_N, d_P) = 1$ (13因此在(Σ_N, d_P) 中, $-\log_a N \leq \dim_H(C \cap U) \leq 1$ (13)

中国 2 购证明(13) 中国 2 购证明(15) $C \subseteq S$ 是 $C \in S$ 是 $C \in$

可测的(13)由于 $\mathfrak{g} \mid_{[i]_S}:[i]_s \to_s \mathbb{Z}$ 是一个同胚,故 $D_i = \mathfrak{g}(C_i)$ 也是 H^d -可测的(13)从而 $D = \mathfrak{g}(C) = \mathfrak{g}(\bigcup_{i,i=1}^N C_i) = \bigcup_{i,i=1}^N \mathfrak{g}(C_i) = \bigcup_{i,i=1}^N D_i$ 也是 H^d -可测的(13)由于 C 是一个 Li-Yorke 混沌集,故映射 $\mathfrak{g} \mid_C \mathbb{Z}$ 是一个单射,由诸 C_i 两两无交得诸 D_i 两两无交(13)据引理 6 有 $H^d(D) = H^d(\bigcup_{i,i=1}^N D_i = \sum_{i,i=1}^N H^d(D_i) = \sum_{i,i=1}^N H^d(\mathfrak{g}(C_i)) \geqslant \sum_{i,i=1}^N (\frac{1}{b^d}) H^d(C_i) = (\frac{1}{b})^d H^d(C)$,而 $b = \max \{p_i \mid_{i=1}^N 2, \dots, N \}$ [13]

另一方面易验证 $D = \mathfrak{q}(C)$ 也是一个 Li-Yorke 混沌集(13)据以上论证, 如果存在一个 H^d -可测的混沌集 $C \subset S$, 则 $\forall n \geqslant 1$, $\mathfrak{q}(C)$ 也是一个可测的 \mathfrak{q} 的 Li-Yorke 混沌集, 且有 H^d ($\mathfrak{q}(C)$) $\geqslant (\frac{1}{b})^{nd}H^d$ (C) (13)诺 H^d (C) $\neq 0$, 则当 $n \rightarrow \infty$ 时, H^d ($\mathfrak{q}(C)$) $\rightarrow \infty$, 这与 H^d (C) $\leq \infty$ 矛盾(13)故 H^d (C) ≤ 0 (13)

参考文献:

- [1] T·Y·Li and J·A·Yorke, Period three implies chaos, Amer·Math·Monthly[J].82(1975), 985~992.
- [2] Xiong Jincheng, Yang Zhongguo, Chaos caused by a topologically mixing map, In; Shiraiwa k·ed· Dynamical Systems and Related Topics[M]. Singapore, New York, world Scientific, 1992, 550~572.
- [3] 熊金城19.符号空间转移自映射混沌集合的 Hausdorff 维数[J].中国科学(A辑),25(1995),1:1~1119.
- [4] Smital J., A chaotic function with some external propertices [J]. Proc.amer.Math.Soc., 1983, 87:54~5619.
- [5] 熊金城, 陈二才19.强混合的保测变换引起的混沌[J]19.中国科学(A辑), 26(1996), 11:961~96719.
- [6] Falconer K · Fractal Geometry[M] · England:Wiley, 1990

The Hausdorff dimension and Hausdorff Measure of Chaotic Subsets for Shift

WANG Huo-yun¹, LU Jian-ping²

- (1. Department of Mathematics, Guangzhou University, Guangzhou 510030, China;
- 2. Department of Mathhematics, South China Normal University, Guangzhou 510631, China)

Abstract: In this paper we obtained some results as follow: Suppose d_P is a metric on Σ_N by probability vector P to be defined, then is a chaotic set $C \subseteq \Sigma_N$ for shift σ such that for every open set $U \subseteq \Sigma_N$, $\dim_H(U \cap C) > 0$; if C is a H^d -measurable Li-yorkechaotic set for subshift \mathfrak{F} , where $\dim_H(S) = d$ and $H^d(C) < \infty$, then $H^d(C) = 0$.

Key words: shift; Hausdorff dimension; Hausdorff measure; chaotic sets; symbolic spaces