文章编号:1005-0523(2002)03-0075-03

基于 MATLAB 的双定子感应电动机仿真研究

张桂新, 陈特放

(中南大学铁道校区 信息工程学院,湖南 长沙 410075)

摘要:将双定子感应电机等效折算为常规感应电动机,利用 Matlab 中的 Simulink 及 Power System Blockset 对双定子感应电动机的起动及调速性能进行仿真研究.

 关键
 词:双定子;感应电动机;仿真;MATLAB

 中图分类号:TM922
 文献标识码:A

0 引 言

双定子感应电动机[1]是一种新型的感应电机,它具有良好的起动与调速性能,能够较好地克服普通笼型感应电动机存在的问题。该种电机用于流量变化的风机水泵的调速控制,具有显著的节能效果,因而得到广泛的关注和重视.

Power System Blockset 是 Mathworks 公司推出的 Matlab 在 5.2 版本后增加的一个电力系统模块集. 是一种非常好的电气系统仿真软件.

本文将双定子感应电动机等效折算为常规感应电动机,利用 Matlab 中的 Power System Blockset 对双定子感应电动机的起动及调速性能进行仿真研究.为电机的进一步设计、参数计算和调速系统设计提供一定的依据.

2 结构及工作原理

双定子感应电动机由两个定子和一个笼型转子构成,转子的每根导条具有两个定子的全部长度.两个定子中一个固定,另一个则可以相对固定定子旋转一个角度,称为调节定子.当调节定子旋转角度时,两个定子绕组所产生的旋转磁通势将产

生相应的相位差,引起转子导条合成感应电动势随 α改变,从而使转子转速也随之改变.这样,通过改 变调节定子的位置,即可达到平滑调速的目的.

3 等效电路及分析

在参考文献[2]中,作者引入"旋转等效"和"相位折算"的概念,推导出折算到转子边的双定子感应电动机的"T"型等效电路.

为了能利用 Power System Blockset 中的电机模型,需要将转子侧的物理量. 折算到定子侧的等效电路如图 1 所示.

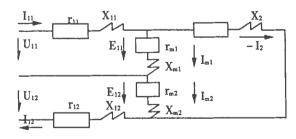


图 1 以定感应电动机"1"形等效电路(折算到定子侧)

符号说明: U, I, E 分别表示电源电压、电流和反电动势, r, x, w 分别表示绕组电阻、漏抗和一相串联匝数. 下标中第一个数字 1 或 2 分别表示定子或转子,第二个数字 1 或 2 用以区分两个定子及与

之相关的量,S 和 分别表示转差率和两定子之间的相对旋转电角度.

经过相位折算后, \dot{E}_{21} 和 \dot{E}_{22} 与 \dot{E}_{11} 和 \dot{E}_{12} 同相位,转子相绕组等效匝数为 W_{21} K_{W21} K_{α} 和 W_{22} K_{W22} K_{α} , 折算后转子电动势应满足:

$$\begin{split} &\frac{E_{21}^{'}}{E_{21}} = \frac{E_{11}}{E_{21}} = \frac{W_{11} \ K_{w11}}{E_{21} K_{w21} K_{\alpha}} = \frac{K_{e1}}{K_{\alpha}} = K_{e1 \alpha} \\ &\frac{E_{22}^{'}}{E_{22}} = \frac{E_{12}}{E_{22}} = \frac{W_{12} \ K_{w12}}{W_{22} K_{w22} K_{\alpha}} = \frac{K_{e2}}{K_{\alpha}} = K_{e2 \alpha} \\ & \text{其中}, K_{\alpha} = \frac{\sqrt{1 + k^2 + 2 k \cos}}{1 + k} \text{为相位折算系数}. \\ &k = \frac{E_{22 \alpha}}{E_{21 \alpha}} = \frac{B_{\delta 12 l_{12}}}{B_{\delta 11 l_{11}}}, l_{11}, l_{12} \text{为两定子的轴向长度}, \end{split}$$

 $B_{\delta 11}$, $B_{\delta 12}$ 为气隙磁.

 $K_{e^{1}\alpha}$, $K_{e^{2}\alpha}$ 为两个转子电动势折算系数. 同样, 两个转子绕组的电流折算系数为:

$$K_{i2\alpha} = \frac{K_{i2}}{K_{\alpha}} = \frac{m_1 W_{12} K_{W12}}{m_2 W_{22} K_{\omega 22} K_{\alpha}}$$
 $K_{i1\alpha} = \frac{K_{i1}}{K_{\alpha}} = \frac{m_1 W_{11} K_{W11}}{m_2 W_{21} K_{\omega 21} K_{\alpha}}$

运行时, $I_m \le < I_1$, 可得如图 2 所示的近似等效电路.

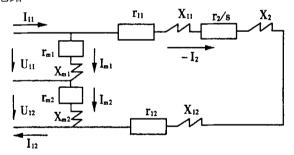


图 2 双定子感应电动机近似等效电路

由于: $r_2' = K_{e^1 \alpha} K_{i^1 \alpha} r_2 = K_{e^1} K_{i^1 r_2} / K_{\alpha}^2 = r_2'' / K_{\alpha}^2$ $x_2' = K_{e^1 \alpha} K_{i^1 \alpha} x_2 = K_{e^1} K_{i^1 x_2} / K_{\alpha}^2 = x_2'' / K_{\alpha}^2$

这里: $r_2^{''}$ 和 $x_2^{''}$ 分别为 $\alpha=0^\circ$ 时转子电阻与漏抗的折算值.

由此可知,两定子间的 α 角度改变,引起转子等效参数的改变,从而导致电机的性能改变.

由近似等效电路,有

$$T = \frac{m_1}{\Omega_0} \frac{(U_{11} + U_{12})^2 r_2' / s}{\Omega_0 (r_{11} + r_{12} + r_2' / s)^2 + (x_{11} + x_{12} + x_2')^2}$$
忽略定子边漏阻抗、上式为
$$T = \frac{m_1}{\Omega_0} \frac{(U_{11} + U_{12})^2 r_2' / s}{\Omega_0 (r_2' / s)^2 + (x_2')^2}$$

$$= \frac{m_1}{\Omega_0} \frac{(U_{11} + U_{12})^2 r_2' k_a^2 / s}{\Omega_0 (r_2' / s)^2 + (x_2')^2}$$

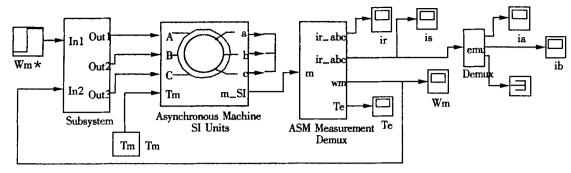
可见,运行时,双定子感应电动机的转矩与电源电压($U_{11}+U_{12}$)和 K^2_α 成正比.

4 仿真模型 参数及结果

根据以上分析及讨论,我们利用 Matlab 中的 Power System Blockset 对双定子感应电动机的起动及调速性能进行了仿真研究. 仿真模型如图 3 所示.

仿真所用双定子电机两部分结构和参数完全相同,均为6极三相笼型电机,参数为:

$$\begin{array}{lll} & r_s\!=\!1.04 \ \Omega, =\!0.763 \ \Omega, L_s\!=\!0.1035 \ H, \\ L_n^{''}\!=\!0.1053 \ H, L_m\!=\!0.0985 \ H, J\!=\!0.08 \ kg \cdot m^2 \end{array}$$


调速系统采用速度闭环控制,速度调节器由 PI 调节器与限幅环节组成.

仿真结果如下:

5 结束语

从仿真结果可以看出,双定子感应电动机两定子间的旋转角 $\alpha \neq 0$ 时,可以很好地限制起动电流,尤其在 $\alpha = 120^{\circ}$ 时,效果较好.因此,在起动时使=120°,起动完毕切换到 $\alpha = 0^{\circ}$,可得到良好的起动性能.给定转速和负载分别在 $2_{\rm s}$ 时突变,动态响应快,调速性能好.

本文利用 Matlab 中的 Simulink 及 Power System Blockset 模块集对双定子感应电动机调速系统进行建模与仿真. 结果表明这种方法简单、实用,可以大大缩短建模时间,提高研究效率,为实际系统的设计与调试提供帮助.

(a) 双定子感应电动机系统仿真模型

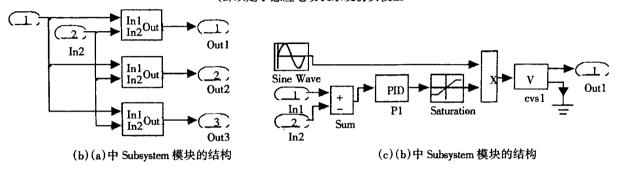


图 3 双定子感应电动机系统仿真模型

参考文献:

- [1] B. H. Smith. Theory and Performance of a Twin Stator Induction Machine. IEEE Transactions on Power Apparatus and System, 1966, 85(2).
- [2] J. Peraha, C.V. Nayar. Generalized machine theory applied to a three twin stator squirrel-cage induction motor. Int. J. Elect. Enging Educ, 1994, 31.
- [3] 王雪帆·双定子感应电动机等效电路分析[J]·中国电机工程学报,1999,19(5):39~43.

Simulating Research on Twin-stator Induction Motor Based on MATLAB

ZHANG Gui-xin, CHEN Te-fang

(Information Engineering College, Central South University, Changsha, 410075 China)

Abstract: In this paper the equivalent circuit of twin-stator induction motor is given. Based on Matlab's Simulink and Power System Blockest function, the result of simulating research on the motor's starting and speed adjusting performances are offered.

Key Words: twin stator; induction motor; simulation; MATLAB