文章编号:1005-0523(2004)04-0119-03

Queens 一图的构造

邓毅雄1,周尚超2,曾 伟2,王 森2

(华东交通大学 1.信息工程学院, 2.基础科学学院 江西 南昌 330013)

摘要:一个(0,1)一矩阵 A 的 queens - 图的点集对应于 A 中的"1",两个点邻接当且仅当它们对应的"1"在 A 的同一条线上·文献 [1]引入此概念并进行了讨论,本文进一步给出 queens - 图的几个结论,并得到了几类新的 queens - 图.

关 键 词:图;(0,1)一矩阵;Queens一图;

中图分类号:0157.5

文献标识码:A

0 引 言

本文所讨论的图都是简单图,文中未加说明的术语和符号参阅文献 $^{[2][3]}$. 文献 $^{[1]}$ 引入了 queens一图的概念,(0,1)一矩阵是元素为0或1的矩阵,queens一图是通过(0,1)一矩阵来划分的特殊图类,对它的研究在图论及其应用中都有一定的意义.

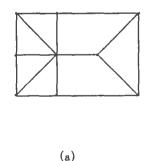
设 A 是一个(0,1)一矩阵.一个图 G 称为矩阵 A 对应的 queens 图,如果图 G 的点与 A 的 1 相对应,两个点邻接当且仅当它们对应在 A 中的 1 同在某行、列或某对角线上. (矩阵的行、列或对角线统称为"线")记为 G=Q(A).

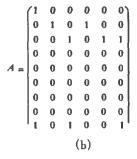
对图 G, 如果存在 (0,1) 一矩阵 A, 使得 G=0

(A),那么我们说图 G 是一个 queens - 图. 关于这方面研究的一个主要问题是: 哪些图是 queens - 图? 文献 $^{[1]}$ 给出了一些 queens $^{-}$ 图的结果.

确定一个图 G 是否为 queens - 图,就是确定 G 所对应的(0,1) - 矩阵 A, 也就是确定 A 中 1 的坐标 (i,j),相对应地,即是确定 G 的点的坐标(i,j). 在 讨论中,既可以给出 queens - 图对应的(0,1) - 矩阵 或其示意图,也可以给出其点对应的坐标.

将双星图 S(m,n)(其中 $\max\{m,n\}$ (2)的悬挂点依次邻接起来所得到的平面图,称为双星 Halin 图,记为 S(m;n).如图 1 所示,双星 Halin 图 S(5;2) 是 queens - 图,其中:(a)双星 Halin 图;(b) 对应的 (0,1) 一矩阵;(c) 对应的(0,1) 一矩阵的示意图.





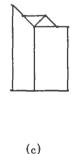


图 1 关于双星 Halin 图 S(5; 2)

收稿日期:2004-03-04

作者简介:邓毅雄(1963一),男,江西新干人,华东交通大学教授.

中国知网 https://www.cnki.net

当然也可给 S(5;2)出中点对应的坐标为:(0,0),(0,8),(1,1),(2,2),(2,8),(3,1),(4,2),(5,2),(5,8).

另外注意到,queens - 图 G 对应的(0,1) - 矩阵 A 的转置矩阵 A^{T} 对应的 queens - 图仍然是 G. 文献^[1]给出了下面两个非常基本的结论:

引理 $1^{[1]}$. 图 G 是 queens 一图当且仅当它的点可以对应坐标 (i,j),并且两个不同的点 (i,j) 和 (k,l) 邻接当且仅当(1) i=k,或 (2) j=l,或 (3) i+j=k+l,或 (4) i-j=k-l.

引理 $2^{[1]}$. 如果图 G 是 queens $\overline{}$ 图,那么 G 不包含导出子图 $K_{1.5}$.

设 G 是 queens - 图,uEV(G),SEV(G). 为方便,我们分别用 H_u 、 V_u 、 P_u 、 M_u 表示点 u 在对应的(0,1) 一矩阵 A 中的行线、列线、正对角线、负对角线,同时用 H_s 、 V_s 、 P_s 、 M_s 分别表示点集 S 中所有点所在的行线、列线、正对角线、负对角线的集合,用 L_G 表示 queens - 图 G 的所有线的集合. 从图形的角度看,我们注意到,在对应(0,1) 一矩阵中,任意queens - 图的每个点总是位于某些上述线的交点处,而且所有点总是落在某些上述类型的线所围成的区域内.

设 G 是 queens - 图, $u \in V(G)$, 若在 G 的(0,1) - 矩阵中有 k 条线上只包含 u, 则称 u 为 G 对应(0,1) - 矩阵的 k 线自由点, 简称 k 线点或统称这样的点为非饱和点. 如果 k=0, 称 u 为 G 的饱和点. 为了下文的需要, 我们给出引理 3:

引理 3 圈 C_n 是 queens - 图.

1 主要结果及其证明

首先我们考虑,如果图 G_1 , G_2 是 queens - 图,那么 $G_1 \cup G_2$ 是否也是 queens - 图? 我们有

定理 1 设 G_1 , G_2 是 queens - 图,则 $G_1 \cup G_2$ 也是 queens - 图.

证明 我们来构造图 $G_1 \cup G_2$ 对应的(0,1)一矩阵 A',且 A'的阶数足够大.由于 G_1 是 queens一图,总可以将 G_1 中的点对应的 1 置于(0,1)一矩阵 A'的由 $x = a_1, x = a_2(a_1 \le a_2); y = b_1, y = b_2$ ($b_1 \le b_2$); $y = x + c_1, y = x + c_2(c_1 \le c_2); y = -x + d_1, y = -x + d_2(d_1 \le d_2)$ 所围成的区域内.下面给出 G_2 中点的坐标,由于 G_2 是 queens一图,设 $G_2 = O(A)$ 且(0,1)矩阵 A 是 S(t) 阶的.对任意 $U(V(G_2)$,若 $U(V(G_2)$,若 $U(V(G_2)$,若 $U(V(G_2)$,我

们如下给出 u 在($^{(0,1)}$)一矩阵 A '中对应的 $^{(1)}$ 的坐标 $(x^{(1)}, y^{(2)})$:

$$x' = x + s + b_2 - c_2 + 2$$
, $y' = y + b_2 + 1$,

如此我们就构造了 $G_1 \cup G_2$ 对应的(0,1)矩阵 A',显然 $G_1 \cup G_2 = Q(A')$.

由定理 1,说明了任意 queens - 图的并图仍然是 queens - 图. 事实上,利用同样的思路,我们可以证明:若 $G_1 \cup G_2$ 是 queens - 图,那么 G_1 , G_2 也分别是 queens - 图,进一步,又有

推论 1 设 G_1 , G_2 , ..., G_n 是 queens $\overline{}$ 图,则 $G_1 \cup G_2 \cup ... \cup G_n$ 也是 queens $\overline{}$ 图.

文献^{[1][4]}用不同方法证明了任意不包含导出 子图 $K^{1,5}$ 的树 T 都是 queens - 图, 另外任意完全 图 K^{n} 是 queens - 图, 所以由推理 1, 我们有

推论 2 任意不包含导出子图 $K_{1,5}$ 的森林 F 都是 gueens 一图.

推论 3 设 K_{ni} 是 n_i 阶 $(i=1,\ldots,m)$ 完全图,则并图 $\bigcup_{i=1}^{m} K_{ni}$ 是 queens -图.

推论 4 设 C_{ni} 是 n_i 阶 $(i=1,\ldots,m)$ 圈,则并图 $\bigcup_{i=1}^{m} C_{ni}$ 是 queens -图.

对图 G_1 、 G_2 ,若 $v_1 \in V(G_1)$, $v_2 \in V(G_2)$,将 G_1 的点 v_1 和 G_2 的点 v_2 粘合所得之图记为 $G_1 \odot v_1 = v_2 \odot G_2$ 如若 G_1 、 G_2 都是圈,如此得到的图记为 $G_m \odot C_n$,类似地,我们也记,图 G 的某点 u 与路 P_m 的一端点粘合所得之图为 $G_u \odot P_m$ 在圈 G_n 的每个点上各粘上一条长为 $G_n \odot G_n$ 的互不相交的路所得之图称为太阳图,记为 $G_n \odot G_n$

下面我们对这种粘合的情况进行讨论,得到如 下几个结果:

定理² 设 G 是 queens $\overline{}$ 图, u 是 G 的非饱和点,则 $G_u \odot P_m$ 是 queens $\overline{}$ 图.

证明 由于 G 是 queens - 图, 设($v \in V(G)$, 其在对应(0,1) - 矩阵的坐标为(x_v,y_v), 其中点 u 的坐标为(x_u,y_u). 同时设 G 中点的坐标位于 $x = a_1, x = a_2(a_1 \le a_2); y = b_1, y = b_2(b_1 \le b_2); y = x + c_1, y = x + c_2(c_1 \le c_2); y = -x + d_1, y = -x + d_2(d_1 \le d_2)$ 所围成的区域内. 不失一般性,设 H_u 线中只包含 u.

下面我们给出图 $G_u \cdot P_m$ 的点 v 的坐标 (x'_v, y'_v) :

- $(i) \stackrel{d}{=} v \in V(G)$ $\forall v \in V(G)$ $\forall v \in V(G)$ $\forall v \in V(G)$
- (ii) 当 $v \in V(P_m)$ 时,设 $V(P_m)$

 $=\{u=v_0, v_1, \dots, v_{m-1}\},$ 令 取 $v_i(i=1,2,\dots,m-1)$ 的坐标对应为 $(x'_i, y'_i).$

易于验证, $G_u \odot P_m \neq V(G) \cup \{v_i \mid i=1, 2, \ldots, m-1\}$ 对应的 queens -图.

因此,由引理3并连续地利用定理2,我们有

推论 4 太阳图 Sn(m)是 queens -图.

定理 3 图 $C_n \odot C_m$ 是 Queens - 图.

下面我们将定理2的结果进一步推广.

设有圈 C_n 与 C_m ,以及路 $P_t(t(2), 我们称将 <math>P_t$ 的两端点分别与 C_n 和 C_m 上的一个点粘合所得之图 为哑铃图,记为 C_m 0, C_m 1.

定理 4 哑铃图 dumb(n, m, t)是 queens $\overline{\mathbb{C}}$ 图 か 元 升 ない ナンファク

前面我们讨论了将 queens 一图粘合得到新的 queens 一图,在这里我们首先考虑将一个 queens 一图 的悬挂点去掉所得之图.我们注意到,去掉一个 queens 一图的悬挂点,就相当于在其对应的(0,1) 一矩阵中把该悬挂点所对应的元素"1"改为元素"0".由于它是悬挂点,这个元素的改变,不会影响其它点的坐标及其结构关系,所以我们有:

定理 5 如果 G 是 queens - 图,那么去掉 G 的 若干悬挂点所得之子图仍然是 queens - 图.

更进一步,如果图 G 有割点 u, H_1 , H_2 , ..., H_t 是 G-u 的一个连通分支(称为子块,由引理 2 知,t (4). 如果 G 是 queens - 图,那么在其对应的(0, 1) - 矩阵中将子图 H_i (不含 u)中的点所对应元素"1" 改为元素"0"就相当于在 G 中去掉子图 H_i , 这时不改变其它的元素,也没有改变其它元素的结构关系,如此得到的新的(0, 1) - 矩阵对应于图 $G-H_i$,所以图 $G-H_i$ 仍然是 queens - 图.从而:

定理 6 设 u 是图 G 的割点, H 是 G^-u 一个连通分支, 如果 G 是 queens $\overline{}$ 图, 那么 G^-H 也是 queens $\overline{}$ 图.

文献^[1]已经证明: 当 n 为偶数时, $C_n \times P_m$ 是 queens - 图, 并提出了猜想: 当 n 为奇数时, $C_n \times P_m$ 是 queens - 图. 这个猜想目前还没有较好的结果, 这里我们有

定理 7 $C_3 \times P_m$ 是 queens - 图.

设 $C_3 \times P_m$ 的所有点为: $\{v_{i1}, v_{i2}, v_{i3}\}$ $\{i=0, 1, 2, \ldots, m\}$.

现在我们令
$$x_{01}=0, x_{02}=2, x_{03}=5, y_{0j}=0 (j=1,2,3);$$

 $x_{11}=0, x_{12}=2, x_{13}=5,$
 $y_{1j}=1(j=1,2,3);$
 $x_{2j}=6 (j=1,2,3), y_{21}=7,$
 $y_{22}=5, y_{23}=2;$
 $x_{3j}=13, y_{3j}=y_{2j}(j=1,2,3).$

当 k 1时,分四种情况进行讨论:

(i) 当 i=4k 时,令

$$x_{i1} = x_{i-1,1} + 1, x_{i2} = x_{i-1,1} + 3,$$

 $x_{i3} = x_{i-1,1} + 6;$
 $y_{ij} = y_{i-1,1} + 1 \quad (j=1,2,3).$

(*ii*) 当 i=4k+1 时, 令 $x_{ij} = x_{i-1,j} (j=1,2,3);$ $y_{ij} = y_{i-4,1} + x_{i-2,1} - x_{i-4,1} + 7$ (i=1,2,3).

(iii) $\leq i = 4k + 2 \text{ pd}, \Leftrightarrow$ $x_{ij} = x_{i-1,j} + 1(j = 1,2,3);$ $y_{i1} = y_{i-1,1} + 6, y_{i2} = y_{i-1,1} + 4,$ $y_{i3} = y_{i-1,1} + 1$

 (\dot{w}) 当 i=4k+3 时,

$$x_{ij} = y_{i-2,1} - y_{i-3,3} + x_{i-3,3} + 7,$$

 $y_{ij} = y_{i-1,j} (j=1,2,3).$

设 v_{ij} 的坐标对应为(x_{ij} , y_{ij}) (i=0,1,2,...,m,j=1,2,3),可以验证 C(m,3)是 $\{v_{ij}$ (i=0,1,2,...,m,j=1,2,3 $\}$ 对应的 queens -图.

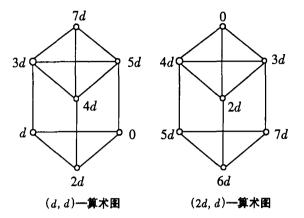
至此,我们利用图的构造,得到了几类新的queen一图.

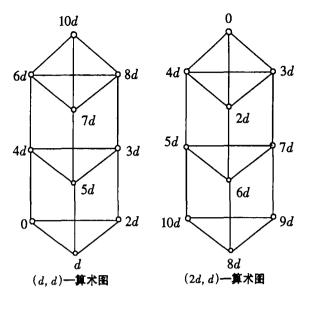
参考文献:

- [1]L·W·Beineke, I·Broere, M·A·Henning, Queens Graphs, Discrete Mathematics [J] 206(1999)63-75.
- [2] G. Chartrand, L. Lesniak, Graphs and Digraphs, [M] Wadsworth (Brooks/Cole, Monterey, 1996.
- [3] J. A. Bondy, $U \cdot S \cdot R \cdot Murty$, Graph Theory with Application [M], The Macmillan Press Ltd, 1976.
- [4]邓毅雄等,关于 Queens 图的若干结果[J],华东交通大学学报,2003,(1),82~85.

(下转第124页)

- [2] Acharya B D, Hegde S M. Arithemetic graphs: Journal of Graph Theory, 1990, 18(3):275~299.
- [3]邓毅雄,王森等,关于算术图的几个结果,华东交通大学学报,2003,20(4):109~111.
- [4]刘二根,任飞正等,广义图 k(6,n)的边色数,华东交通大学学报,2002,19(2):81~82.





A Note on Arithemetic Graphs

LIU Er-gen

(School of Natural Science, East China Jiaotong University, Nanchang 330013, China)

Abstract: In this paper, we prove the graph K(4, n) is (d, d)-Arithemetic graphs or the graph K(4, n) is (2d, d)-Arithemetic graphs.

Key words: Arithemetic graphs; labeling; graph K(4, n)

(上接第121页)

Construction of Queens Graphs

DENG Yi-xiong¹, ZHOU Shang-chao², ZENG Wei¹, WANG Seng¹

(1. School of Information Engineering, 2. School of Natural Science, East China Jiaotong Univ. Nanchang 330013, China)

Abstract: The queens graph of a (0,1)—matrix A is the graph whose vertices correspond to the 1's in A and in which two vertices are adjacent if and only if some diagonal or line of A contains the corresponding 1's. A basic question is the determination of which graphs are queens graphs. Queens graphs be introduced by paper^[1]. This paper get some results of queens graphs, and show some graphs that is queens graphs.

Key Words: graph; queens graphs; (0, 1) matrix