文章编号:1005-0523(2005)04-0149-03

关于图的主控制数

汤鹏志

(华东交通大学 基础科学学院,江西 南昌 330013)

摘要:设 $\gamma_{maj}(G)$ 表示一个图G的主控制数, $g(n, \delta) = \min \{ \gamma_{maj}(G) \mid G$ 为一个n 阶图且 $\delta(G) = \delta \}$ 对于所有整数 n 和 $\delta(n > \delta \ge 1)$, 本文确定了 $g(n, \delta)$ 的值. 此外, 还给出了图的主控制数的另一个下界, 这也推广了文[1]中的一个结果.

关键词:主控制函数;主控制数

中图分类号:0157.5

文献标识码:A

本文所指的图均为无向简单图,文中未说明的符号和术语同于文献[1、7].

设 G = (V, E) 为一个图, 其顶点集 V = V(G) 和边集 E = E(G),对于任意 $u \in V(G)$,则为 $N_G(u)$ 为 u 点在 G 中的邻域, $N_G[u] = N_G(u)U^{\{u\}}$ 为 u 点在 G 中的闭邻域, 在不混淆情况下, $N_G(u)$ 和 $N_G(u)$ 可分别简记为 N(u) 和 N[u] · 若 A 、 $B \subseteq V$,则记 $E(A, B) = \{uv \in E \mid u \in A, v \in B\}$ · 若 G 和 H 是两个不交的图,则 G + H 表示将 G 的每个顶点邻接 H 的每个顶点所得的图 G 表示图 G 的补图 · $\delta(G)$ 和 $\Delta(G)$ 分别为图 G 的最小度和最大度 ·

对于一个实值函数 $f: V \to R$ 和一个子集 $S \subseteq V$,则记 $f(S) = \sum_{u \in S} f(u)$ · 对于任意 $v \in V(G)$,则 f(N[v]) 可简记为 f[v] · 此外,f(v) 称为 v 点在 f 下的标号 ·

定义1 $[1\sim 2]$ 设 G = (V, E) 为一个 n 阶图,一个双值函数 $f: V \rightarrow \{-1,1\}$ 如果满足条件: V 中至少有 $\frac{n}{2}$? 个顶点 v 使得 $f[v] \ge 1$ 成立,则称 f 为图 G 的一个主控制函数,图 G 的主控制数定义为

 $\gamma_{maj}(G) = \min \{ f(V) \mid f$ 为图 G 的主控制函数 $\}$.

对于图的主控制数,目前已经确定了某些特殊图的主控制数[$1 \sim 3$],如路、星、圈、完全图和完全二部图等· 文[$1 \sim 2$] 中也给出了关于正则图主控制数的一个下界,即

引理1 $[1 \sim 2]$ 对于任意 $n \text{ M} r^-$ 正则图 G,则其主控制数

并且此下界是最好可能的.

在本文中,我们确定了最小度为 δ 的所有 n 阶图的最小主控制数,并且联系到图的最小度和最大度,给出了 n 阶图的主控制数的一个下界,推广了引理 1 的结果.

定理1 令 $G(n, \delta) = \min \{ \gamma_{maj}(G) \mid G$ 为一个 n 阶图且 $\delta(G) = \delta \}$,则对于所有整数 n 和($n > \delta$ $\geqslant 1$),均有

$$g(n,\delta) = 2 \frac{\delta+2}{2} - n.$$

证明 证明过程分为两步:

第一步证明:对任意 n 阶图 G, 若 $\delta = \delta(G)$ 则 $\gamma_{maj}(G) \geqslant 2 \frac{\delta+2}{2} - n$.

收稿日期:2005-04-18

基金项目:江西省自然科学基金资助课题(0311047)

作者简介:汤鹏志(1961一),男,江西九江人,副教授.

设 f 是图G的一个主控制函数,且使得 $\gamma_{maj}(G)$ = f(V),由主控制函数的定义知,V 中至少有一个顶点v 使得 $f[v] = \sum_{u \in N[v]} f(u) \geqslant 1$,注意到 $\mid N[v] \mid$ $\mid = d(v) + 1 \geqslant \delta + 1$,从而 N[v] 中至少有「 $\frac{\delta+2}{2}$? 个顶点在f下的标号为 +1,即 V 中至多有n一「 $\frac{\delta+2}{2}$? 个顶点在f下的标号为 -1,故有 $\gamma_{maj}(G) = f(V) \geqslant \lceil \frac{\delta+2}{2} \rceil - (n - \lceil \frac{\delta+2}{2} \rceil) = 2 \frac{\delta+2}{2} ? - n$.第一步证毕.

第二步证明:对任意整数 n 和($n > \delta \ge 1$),存在 n 阶图 G 使得 $\delta = \delta(G)$ 且 $\gamma_{maj}(G) = 2 \frac{\delta + 2}{2}$? -n 成立.

情况 1 当 $\delta=1$ 时,图 G 构造如下: $V(G)=\{v_1,v_2,\ldots,v_n\}$,

 $E(G) = \{v_1v_2, v_3v_1\} U\{v_iv_j\} = 4, 5, \dots, n, j = 1, 2\}$

定义f如下: $f(v_1) = f(v_2) = 1$ 并且 $f(v_i) = -1$ 1(i = 3, 4, ..., n).注意到 $\delta = \delta(G) = d(v_3) = 1$,不难验证,f 为图G的一个主控制函数,且f(V) = 2 $-(2-n) = 2 \frac{\delta+2}{2}$? -n,由主控制数的定义知 $\gamma_{maj}(G) \leq f(G)$,由上述已得的下界,我们有 $\gamma_{maj}(G) = 2 \frac{\delta+2}{2}$? -n.

情况 2 当 $\delta = 2$ 时,

若 n=3,则 $G=K_3$ 为完全图,显然 $\gamma_{maj}(K_3)=1$,定理成立.

若 $n \ge 4$, 取 $G = K_{2, n-2} = (V_1 UV_2, E)$ 为完全 二部图, 其中 $|V_1| = 2$, $|V_2| = n-2$. 定义 f如下: 当 $v \in V_1$ 时 f(v) = 1, 当 $v \in V_2$ 时 f(v) = 1. 不难验证, f 为图 G 的一个主控制函数, 且 f(V) = 2 $-(2-n) = 2 \frac{\delta+2}{2}$, -n. 因此与情况 1 同样得到: $\gamma_{maj}(G) = 2 \frac{\delta+2}{2}$, -n.

情况 3 当 $\delta \ge 3$ 且 δ 为偶数时,如果 $\delta = n - 1$,则 G 为奇数阶完全图,显然, $\gamma_{maj}(K_n) = 1 = 2$ $\frac{\delta+2}{2}$, -n. 下设 $\delta \le n-2$, \diamondsuit $t = \frac{\delta+2}{2}$,

(3.1) 若 t 为偶数或者 n 为奇数; 令 H 为一个 n -t 阶 t -2 度正则图, $G = K_t + H$, 可见 $\delta(G) = \delta$. 定义 f 如下: 当 $v \in V(K_t)$ 时 f(v) = 1, 当 $v \in V(H)$

(3.2) 若为奇数并且 n 为偶数;当 $n = \delta + 2$ 时,取 G 为 K_n 中去掉一个完美匹配 $M = \{u_1v_1, u_2v_2, \dots, u_{\frac{n}{2}}, v_{\frac{n}{2}}\}$ 所得的图·定义 f 如下: $f(u_i) = 1, f(v_i) = -1$ ($i = 1, 2, \dots, \frac{n}{2}$),f 为图 G 的一个主控制函数,且 f(V) = 0,即有 $\gamma_{maj}(G) = 2$ $\frac{\delta + 2}{2}$? 一 $n \cdot \exists n \geqslant \delta + 4$ 时(注意到 n 和 δ 均为偶数),令 $G = K_{\ell-1} + (H + K_2)$,其中 H 为一个 n - t - 1 阶 $\delta - (t + 1) = \frac{\delta - 4}{2}$ 度正则图·记 $V(\overline{K_2}) = \{u_1, u_2\}$,定义 f 如下: $f(u_1) = 1, f(u_2) = -1$;当 $v \in V(K_{\ell-1})$ 时 f(v) = 1;当 $v \in V(H)$ 时 f(v) = -1. 可见 $\delta(G) = \delta$,且不难验证:f 为图 G 的一个主控制函数,且 $f(V) = t - (n - t) = \Gamma \frac{\delta + 2}{2}$? -n,即有 $\gamma_{maj}(G) = 2 \frac{\delta + 2}{2}$? -n

情况 4 当 $\delta \geqslant 3$ 且 δ 为奇数时; 此时令 $t = \lceil \frac{\delta+2}{2} \rceil = \lceil \frac{\delta+3}{2} \rceil$.

如果 $n=\delta+1$;则 G 为偶数阶完全图,显然有 $\gamma_{maj}(K_n)=2=2$ $\frac{\delta+2}{2}$ n.

如果 $n = \delta + 2$;此时 n 为奇数,取 G 为 K_n 中去掉 $\frac{n-1}{2}$ 条独立边集 $M = \{u_1v_1, u_2v_2, \dots, u_{\frac{n-1}{2}}, v_{\frac{n-1}{2}}\}$ 所得的图. 定义 f 如下: $f(v_i) = -1$ (i = 1,

 $2, \ldots, \frac{n-1}{2}$,对其它顶点 v,均定义 f(v) = 1,可见 f 为图 G 的一个主控制函数,且 $f(V) = 1 = 2_t - n$,即有 $\gamma_{maj}(G) = \lceil \frac{\delta+2}{2} \rceil - n$.

下设 $n \ge \delta + 3$;

(4.1) 当 n 为偶数或者 t 为奇数时,注意到 $t \ge 3$.令 $G = K_t + H$,其中 H 为一个 n - t 阶 t - 3 度正则图,可见 $\delta(G) = \delta$. 定义 f 如下:当 $v \in V(K_t)$ 时 f(v) = 1,当 $v \in V(H)$ 时 f(v) = -1.可见对于每个 $v \in V(H)$,均有 f[v] = t - (t - 1) = 1,注意到

时f(q)94-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

 ≥ 4 .

令: $G = K_{t-1} + (\overline{K_2} + H)$, 其中 H 为一个 n - t -1 阶 t - 4 度正则图,可见 $\delta(G) = \delta$. 定义 f 如下: $\overline{K_2}$ 中的两个顶点在 f 下的标号分别为 + 1 和 - 1, K_{t-1} 中每个顶点在 f 下的标号均为 + 1, H 中每个顶点在 f 下的标号均为 - 1, 可见 f 为 G 的主控制函数. 且 f(V) = 2t - n = 2 $\frac{\delta + 2}{2}$? - n, 即有 $\gamma_{maj}(G) = 2$ $\frac{\delta + 2}{2}$? - n. 综合情况 $1 \sim 4$, 第二步证毕.

定理2 对于任意 n 阶图 G, 若 $\Delta = \Delta(G)$ 和 δ = $\delta(G)$ 分别表示图 G 的最大度和最小度,则

$$\gamma_{maj}(G) \geqslant 2 \frac{\lceil \frac{\delta+2}{2} ? \cdot \lceil \frac{n}{2} ? \rceil}{\Delta+1} ? - n$$

并且此下界是最好可能的.

至此,定理1证毕.

证明 设 f 是图 G = (V, E) 的一个主控制函数,且使得 $\gamma_{maj}(G) = f(V)$.

令 $A = \{v \in V \mid f(v) = 1\}, B = \{v \in V \mid f(v) = -1\}, |A| = t 则 |B| = n - t,$ 并且因此 $\gamma_{maj}(G) = t - (n - t) = 2t - n.$ 令 $C = \{v \in V \mid f[v] \mid \geq 1\},$ 由主控制函数的定义 知 $|C| \geq r \frac{n}{2}$? -n. 对于每个 $u \in C$. 由于 $f[u] \geq 1$. 故 N[u] 中至少 $\frac{\delta+2}{2}$? 个顶点在f下的标号均为 +1. 因此,令 $P(u) = |N[u] \cap A|$,我们有

 $\sum_{u \in C} P(u) \geqslant \lceil \frac{n}{2} ? \lceil \frac{\delta+2}{2} \rceil$. 另一方面, 在 f 下的标号为 +1 的每个顶点至多在 $\Delta+1$ 个不同的闭邻域中, 从而($\Delta+1$) $t \geqslant \sum_{u \in V} P(u) \geqslant \sum_{u \in C} P(u)$, 即有 $t \geqslant$

n·因此,定理²给出的下界成立,并且此下界是最好可能的(见以下注 1). 定理 2 证毕.

注 1:在定理 2 中,特殊地令 $\Delta = \delta = r$ 时,则 G 为 n 阶 r 一正则图,并注意到当 r 为奇数时 n 为偶数,不难得到引理 1 给出的下界,由于引理 1 的下界是最好可能的,故定理 2 给出的下界是最好可能的,定理 2 当然也是引理 1 的重要推广.

参考文献:

- [1] M·A·Henning, Domination in regular graphs. Ars. Combin- $43(1996)\ 263{\sim}271.$
- [2]T·W·Haynes, S·T·Hedetniemi and P·J·Slater, Domination in graphs [M]·New York, 1998, 95 \sim 105.
- [3]Zhongfu Zhang, Baogen Xu etc. A note on the lower bounds of signed domination numbers of a graph [J]. Discrete Math. 195 (1999) 295~298.
- [4] Baogen Xu, On minus domination and signed domination in graphs[J]. 数学研究与评论, 4(2003)586~590.
- [5] Baogen Xu, On signed edge domination numbers of graphs[J]. Discrete Math., 239(2001), 179~189.
- [6] J. H. Hattingh and E. Ungerer, The signed and minus k-sub-domination numbers of comets [J]. Discrete Math., 183 (1998) $141 \sim 152$.
- [7] F. 哈拉里. 图论[M]. 上海: 上海科技出版社, 1980.

On Majority Domination Numbers of Graphs

TANG Peng-zhi

(School of Natural Science, East China Jiaotong University, Nanchang 330013, China)

Abstract: Let $\gamma_{maj}(G)$ be the majority domination number of a graph G, $g(n, \delta) = \min\{\gamma_{maj}(G)\} \mid G$ is a graph of order $g(n, \delta) = \infty$. In this paper we determine the exact value of $g(n, \delta)$ for all integers $g(n, \delta) = \infty$, and give a lower bound of the majority domination numbers of graphs, which generalize a result of $g(n, \delta) = \infty$.

Key words: majority dominating function; majority domination number.