文章编号:1005-0523(2005)04-0165-04

三正辛硫基三嗪的摩擦性能研究

熊丽萍,刘 红,何忠义

(华东交通大学 基础科学学院,江西 南昌 330013)

摘要:利用四球摩擦磨损试验机考察了三正辛硫基均三嗪(TOTT)在菜籽油中的摩擦学性能,实验结果表明,类化合物具有良好的极压性能,能很大地提高菜籽油的极压性能.利用 X 射线光电子能谱(XPS)和扫描电子显微镜(SEM)分析了钢球磨损表面典型元素的化学状态,并探讨了该类添加剂的摩擦学机理.利用液质联用考察了该化合物在十六烷中摩擦前后的变化,结果表明,在摩擦过程中,TOTT分子发生了分解,主要是与 C 原子连接的含 S 支链从三嗪环上脱落,再与钢球表面发生摩擦化学反应,在钢球表面形成了一层含硫,磷的富氧膜和有机氮复合膜,这种复合膜是添加剂具有优异摩擦学性能的主要原因.

关键词:TOTT;液质联用;摩擦学性能;机理

中图分类号:0623.626

文献标识码:A

传统多功能润滑油添加剂 ZDDP^[1~2]由于其含有金属和磷,容易形成电化学腐蚀和对催化剂中毒等原因不符合现代机械的要求,现代工况越来越要求使用无灰、无磷或者低磷润滑油添加剂.

含氮杂环化合物^[3~4]是一类性能优良的润滑油添加剂,但是由于其价格昂贵而使其应用受到限制.三嗪衍生物可以从廉价的三氯三氰^[5]制得,最近三嗪衍生物作为润滑油添加剂方面得到了广泛的应用^[6~8].但其在润滑油中的摩擦机理等方面的研究还需要进一步研究,液质联用可以很好地用于分析物质的摩擦前后的结构变化.

本文作者合成了无磷三正辛硫基三嗪衍生物TOIT^[9],使其符合可生物降解润滑油添加剂的要求·并用四球摩擦磨损试验机考查了其在菜籽油中的摩擦学性能,利用液质联用和SEM、XPS等现代分析手段来考察它们的摩擦化学机理.

1 试验方法

1.1 添加剂及基础油

收稿日期:2004-12-18

基金项目:本课题得到江西省自然科学基金(0320052)和江西省科技厅项目(0330063)资助

作者简介:熊丽萍(1971~),女,江西高安市人,讲师,主要从事分析化学等方面的研究.

所用的添加剂为本文作者所合成的 TOIT,基础油为西安嘉里油脂工业有限责任公司提供的精炼天然菜籽油(RSO),其中含少量维生素 E 和水解产物不饱和脂肪酸,菜籽油使用前未经进一步处理.

1.2 摩擦磨损试验

式中: μ 为摩擦系数(无量纲): f_N 为摩擦力矩,单位为N•mm:P为载荷,单位N.

1.3 钢球磨损表面分析

摩擦磨损试验结束后,将四球机上试球浸于石油醚中超声清洗 2 次,共 30 min,用于表面分析.在PHI-5702 型多功能 X 射线光电子能谱仪(XPS)上分析上试球磨斑表面典型元素的化学状态,选用 Mg-Ka 激光源,通过能量 29.35 eV,以碳的 C_{ls} 结合能 284.8 eV 作为内标,入射角为 $\theta=45^{\circ}$,分析面积 1 mm 2 ,分辨率约为 ±0.3 eV,用 JSM-5600LV 型扫描电子显微镜(SEM)观察分析四球机下试球的磨痕形貌.在安捷伦科技有限公司生产的 1100 LC/MSD SL型液质联用仪上考察油样摩擦前后的变化.

2 结果与讨论

2.1 摩擦学性能

其1.0 wt %时的摩擦学性能见表1.从表1可以看出,所合成的添加剂能提高基础油的极压性能.极压值提高了34%,摩擦系数是基础油的89%,磨斑直径是基础油的97%,所合成的添加剂在此浓度下,其抗磨效果和基础油相当,其减摩性能强于在相同条件下的基础油.

表 1 添加剂的摩擦学性能

	P _B 值(N)	WSD(mm)	μ
RSO	686	0.631	0.120
TOTT	921	0.615	0.107

2.2 表面分析结果与讨论

为了进一步了解边界润滑机理,在 392N 下,分别对含 1.0 wt % TOTT 的菜籽油润滑下的摩擦表面形貌及 N、S 元素分布进行了分析,结果如图 1 所示,其中亮区对应元素富集地区.

图 1 磨斑表面 SEM 和摩擦表面元素分布分析图谱

含TOIT 的菜籽油润滑的摩擦表面也有明显的型沟现象,但较平整,烧结不明显,说明TOIT 的抗磨效果较好,与含有极压抗磨活性元素S有关.

结果表明,TOTT 润滑的摩擦表面硫元素分布密度较大而且基本沿磨痕轨迹分布,氮元素分布不均匀.与磨损表面形貌照片对照发现,硫元素富集的地区对应的磨损表面较为光滑,擦伤迹象较弱,说明TOTT 在摩擦过程中,活性元素硫在摩擦表面形成了一层具有抗磨性能的边界润滑膜.

为了进一步了解边界润滑机理,对TOIT 体系润滑下的上球磨痕表面进行了XPS 分析,结果如表 2 所示.

表 2 在 392N 载荷下,添加剂润滑下的钢球磨损 表面典型元素的结合能

Samples —		Binding energy/eV				
	$\mathbf{Fe}_{\mathbf{2p}}$	$\mathbf{S}_{2\mathbf{p}}$	$\mathbf{O}_{1_{\mathbf{s}}}$	$ m N_{1_s}$		
TOIT	710.8	161.6,168.6	531.2,529.8	400.1,398.9		

对磨斑表面进行 XPS 分析[10] 的结果表明,对于 TOTT,位于 $^{161.6}$ eV 和 $^{168.6}$ 附近的硫元素分别归属于 $^{168.6}$ 以及 $^{168.6}$ 等无机硫化物,这说明添加剂在极压润滑条件下与金属表面发生了反应;而 $^{168.6}$ 的结合能为 $^{160.1}$ eV 和 $^{168.9}$ eV,归属于有机氮键合价态,这说明添加剂在摩擦表面发生吸附的同时,对金属的摩擦化学反应.同样能够检测到 $^{169.6}$ 的结合能说明添加剂和金属表面发生了化学反应,从 $^{169.6}$ 的结合能也同样证明了这一点.

为了进一步考察 TOIT 的摩擦学机理,我们利用液质联用来考察添加剂在摩擦前后的变化.含20.0 wt%浓度的 TOIT 的正十六烷在 MRS-1J 型四球磨损试验机上进行摩擦试验,条件为:负荷294N;时间30 min;转速1450 rpm;室温.摩擦前后分别取油样进行液质联用分析,其结果如图2所示.

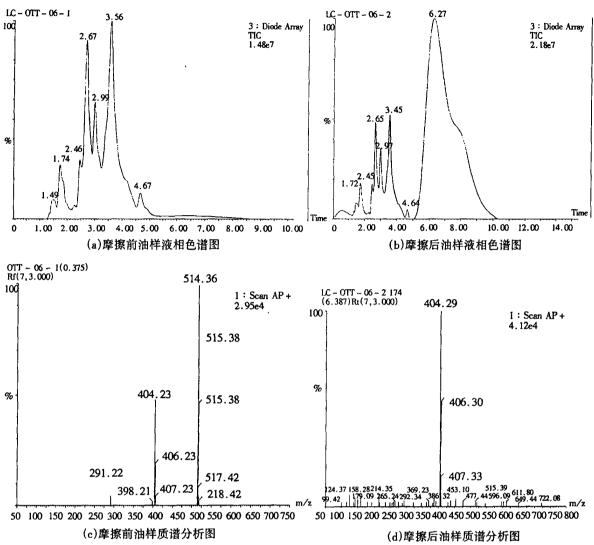


图 2 TOTT 摩擦前后油样液质联用分析图

在摩擦前油样的质谱图中,准分子离子峰(\mathbf{m}/\mathbf{z})514 为 \mathbf{TOTT} (分子量 513)的 $[\mathbf{M}+\mathbf{H}]^+$ 峰,准分子离子峰(\mathbf{m}/\mathbf{z})404 是二取代的 2一巯基一4,6一二正辛硫基一1,3,5一三嗪(如图 4 所示,分子量 401)的 $[\mathbf{M}+3]^+$ 峰;而在摩擦后,质谱图中 514 的分子离子峰消失,说明 \mathbf{TOTT} 在摩擦过程中发生了分解.在摩

擦后的质谱图中还可发现有如图 4 所示的化合物的分子离子峰出现. 说明在摩擦过程中, TOIT 分子发生了分解, 主要是与 C 原子连接的含 S 支链从三嗪环上脱落, 再与钢球表面发生摩擦化学反应. 因此, 磨斑表面的润滑膜中可测得含 S 化合物的存在.

图 4 准分子离子峰 m/z404(分子量 401)和碎片离子的结构图

3 结 论

从上述试验及分析结果可以得出以下结论:

- 1) 四球机考察的摩擦学性能结果表明,TOIT 的表现出一定的极压性能,其抗磨效果和基础油相 当,其减摩性能强于在相同条件下的基础油.
- 2) TOIT 的磨斑表面的 SEM 和元素分布分析结果表明,摩擦过程中生成了一层含有含 S 化合物的润滑膜,而 N 元素分布不均匀. XPS 结果表明,添加剂和金属表面发生了摩擦化学反应,生成一层含FeS、FeSO4等的无机膜以及含氮有机膜,这层边界润滑膜在润滑油中起极压抗磨减摩作用.
- 3) 摩擦前后对含有添加剂 TOIT 浓度为 20.0 wt %的正十六烷油样进行了液质联用分析,从质谱图的分子离子峰分析结果可以看出,在摩擦过程中TOIT 衍生物发生了分解,主要是含 S 支链从三嗪环上脱落,而三嗪环仍保持稳定结构.

参考文献:

[1] R·Unnikrishuan, M·C·Jain· Additive-additive interaction; an XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives [J]. Wear, 2002, 252, 240 \sim

249.

- [2] A. M. Barnes, K. D. Bartle. A review of zinc dialkyldithiophosphates (ZDDPS): characterization of and role in lubricating oil[J]. Tribology International, 2001, 34, 389~395.
- [3] He, Zhongyi, Rao, Wenqi, Ren Tianhui. The Tribochemical Study of Some N-Containing Heterocyclic Compounds as Lubricating Oil Additives[J]. Tribology Letters. 2002;13:87-93.
- [4] Junyan Zhang. The friction and wear behaviors of S⁻[2-S⁻(2-hydroxylpropyl) benthiazole] dioctyldithiocarbamic acid ester as additive in liquid paraffin[J]. Wear, 1999, (224): 50-55.
- [5] 詹威强,胡幼元,任天辉. 三聚氯氰衍生物在精细化工中的应用及发展趋势[J]. 化学工业与工程技术,2001,22(86), $5\sim9$.
- [6] Zeng Xiongqiong, Shao Heyang, He Zhongyi. Study of the tribological behaviors of S,P-containing triazine derivatives as additives in rapeseed oil[J]. Wear, 2004, 257;389~394
- [7] He Zhongyi, Song Yuping, Shao Heyang. A study of the synergistic effect of a triazine-dithiocarbamate derivative with TCP in vegetable oil[J]. Journal of synthetic Lubrication, 2005, 21 (4);287~297.
- [8] 何忠义,章家立,熊丽萍· S、P、N 的三嗪衍生物的合成及 摩擦学性能研究[J]. 华东交通大学学报, 2004, 21(2): 137-138.
- [9] 刘红,熊丽萍,章家立.新型三巯基三嗪衍生物的合成研究[J].华东交通大学学报,2004,21(2):135~136.

[10] http://srdata.nist.gov/xps

The Tribology Study of Trioctylthio-triazine

XIONG Li-ping, LIU Hong, HE Zhong-yi

(School of Natural Science, East China Jiaotong University, Nanchang 330013, China)

Abstract: The compound of 2, 4, 6-trioctylthio⁻¹, 3, 5-triazine (TOTT) as additive in rapeseed oil was examined with fourball machine. The results show that the additive greatly increased the load-carrying capacity of the base oil. The typical elements chemical status of worn surface of the lubricated steel ball were analyzed by means of X-ray photoelectron spectroscopy (XPS) and scanning electron micros copy (SEM). And the paper studied the change of tribological process of TOTT in hexadecane by a LC-MS. The results show that the TOTT decomposed in the tribological process, the S-containing branch connecting with triazine ring was off, reacted with the freshly steel ball surface, to form a protective film containing ferric sulfide, ferric sulfate, organicsulfur compound and organicnitrogen compound on the rubbed surface. The protective film contributed to the increase in the wear resistance and friction reduction.

Key words:TOTT;LC-MS;tribological property;mechanism