文章编号:1005-0523(2006)04-0134-04

收缩圈不影响图的 hamiltonican index

尧雪莉¹,刘展鸿¹,熊黎明²,王 璐¹

(1. 江西师范大学 数学与信息科学学院, 江西 南昌 330022; 2. 北京理工大学 理学院, 北京 100081)

摘要:图 G 的 hamiltonian index 是指使 G 的 k 次迭线图 $L^k(G)$ 成为哈密顿图的最小整数 k·Xiong Li Ming 等在[3]和[4]证明了无论是收缩由图 G 中度数大于等于 3 的点所生成的图的所有非平凡分支还是收缩图 G 的 $A_G(F)$ —contractible 子图 F 都不会影响图 G 的 hamiltonian index·证明了:图 G 收缩满足一定条件的圈也不会改变它的 hamiltonian index·

关键词:hamiltonian index;枝;收缩

中图分类号:0157.5

文献标识码:A

1 引言

本文考虑的图均是指有限无向无环允许重边的图,未见定义的术语和符号参见[1].

设 H 是图 G = (V, E) 的一个子图,V(H) 和 E (H) 分别表示 H 的顶点集和边集,V(H) 和 E (H) 分别表示 H 的顶点数和边数,对于 H 的任意顶点 u,它在 H 中的度数记为 $d_H(u)$ · H 的两个子图 G_1 · G_2 在 H 中的距离(记为 $d_H(G_1, G_2)$)定义为 m in $\{d_H(u_1, u_2): u_1 \ V(G_1)$ 且 u_2 $V(G_2)$,其中 $d_H(u_1, u_2)$ 表示 H 中从 u_1 到 u_2 的最短路的路长 · H c_i 表示顶点个数为 i 的圈 ·

图 G 的线图(记为 L(G))是指以 G 的边集为 顶点集且L(G)的两个顶点(即 G 的两条边)邻接当 且仅当它们在 G 中是关联的·对于整数 $n \ge 1$, n 次 迭线图(记为 $L^n(G)$)递归地定义为 $L(L^{n-1}(G))$, 其中 $L^0(G) = G$ 且 $L^1(G) = L(G)$. 图 G 的 hamiltonian index(记为 h(G))是指使 $L^n(G)$ 为哈密顿图的 最小整数 n.

 $\forall V_i(G) = \{v \in V(G) : d_G(v) = i\}$ 和 W(G) = i

 $V(G) \setminus V_2(G) \cdot G$ 中的一条路叫做枝是指它的端点在 W(G) 中且内点均在 $V_2(G)$ 中· 如果一条枝的长度为 1, 那么它就没有内点 · 用 B(G)表示 G 中所有的枝集合 · 记 $B_1(G) = \{b \in B(G) : V(b) I V_1(G) \neq \emptyset \}$ · 记 $B_H(G) = \{b \in B(G) : E(b) \subseteq E(H) \}$.

对于集 $S \subseteq V(G)$ 或 E(G)我们用 G[S]表示 S 在 G 中的导出子图.

令 $E_k(G)$ 表示 G 中满足下列条件的子图的集合.

(i) H 的每一个顶点都是偶度,即对 $x \in V(H)$ 都有 $d_H(x) \equiv 0 \pmod{2}$;

$$(ii) V_0(H) \subseteq \stackrel{\triangle(G)}{\underset{i=3}{\overset{}{\sim}}} V_i(G) \subseteq V(H);$$

(iii)对于 H 的任何子图 H_1 ,都有 $d_G(H_1, H^-H_1)$? k 1;

 (\dot{w}) 对于 G 中的任何枝 b,若 E(b)IE(H) = ϕ ,都有 $|E(b)| \leq k+1$;

(v)若 $b \in B_1(G)$,则 $|E(b)| \leq k$.

定理 $1^{[2]}$ 设 G 是一个连通图且不含顶点个数为 2 的圈, $n \ge 2(n$ 为整数),则 $h(G) \le n$ 当且仅当 $EU_n(G) = \emptyset$.

设F为G的子图,用G/F表示由图G收缩子

收稿日期:2006-03-09

作者简介: 尧雪莉(1982一), 女, 江西黎川人, 江西师范大学数信学院 2004 级图论方向的研究生.

中国知网 https://www.cnki.net

图 F 中所有边,并将产生的环删除而到的图;用 G F 表示由图 G 将子图 F 的所有顶点看作一个新的顶点 v_F (则 G 中两个顶点都属于 V(F)的边变成了环),并将产生的每个环用与 v_F 关联的悬挂边(有一个顶点度数为 1 的边)取代而得到的图. 可知 |E| $|G| = |E(G|_F)|$ 且 G/F 与 G|F 删除新增悬挂边是等价的.

由[4]可知,一个图收缩圈 C_3 并不会影响它的 hamiltonian index,但收缩 $C_i(i^3 4)$ 却不能保证 hamiltonian index 不变,本文将证明连通图在满足一定条件下收缩 $C_i(i^3 4)$ 并不影响它的 hamiltonian index,且圈可收缩的长度范围是最好可能的.

2 定理的证明

引理 $2^{[3]}$ 设 G 是欧拉图且 H 为 G 的子图,那 么 G/H 也是欧拉图.

下面我们给出本文的主要结果.且下面定理的证明与[3]中定理的证明类似.

证明 设 G 在中由收缩 G 中 C_i 的顶点集而得到的顶点记为 v_{c_i} 由 $G = G|_{C_i}$ 有断言 1: (除了 G 中两个端点都属于 $V(C_i)$ 的枝以及 G 中新增的悬挂边) G 和 G 有相同的枝集合

下面证 $h(G) \leq h(G)$ 由 $h(G) \geq 2$ 以及定理

1,知道 \$ H $EU_h(G_{\subset}(G)(\Pi R H) EU_h(G_{\subset})(G_{\subset})$ 中顶点数最多的那个图).下面从 H_{\subset} 构造一个图 H,使得 H $EU_{h(G_{\subset})}(G)$.令 $V_b(H_{\subset})=\{\mathscr{L}V(C_i), xB_{H_{\subset}}(G)$ 为某个枝的端点 $\{:\}$ 令 $\gamma(x)$ 为在 $B_{H_{\subset}}(G)$ 中以 x 为端点的枝的个数; $V_b=\{x \ V_b(H_{\subset}): \gamma(x) \ j(\text{mod}2)\}; m=\{G \ \text{中满足下面} \ 2 \ \text{个条件的圈}$ 的个数; 条件①此圈恰好包含 $V(C_i)$ 中的一个顶点,②除了这个顶点其他顶点的度数都为 $2\}$.则 $r(x)+r(x)+2m=d_{H_{\subset}}(v_{C_1}\cdot B)$ H $EU_{h(G_{\subset})}(G)$,所以 $d_{H_{\subset}}(U_{ci})$ 是偶数. 因为 $\sum_{x\in V_b^1} r(x)$ 是偶数,所以 $\sum_{x\in V_b^1} r(x)$ 是偶数. 因为当 $x\in V_b^1$,r(x) 是奇数,所以 V_b^1 是偶数.

下面分两种情况构造图 H 并且证明 $H^*EU_{h(G)}$ (G).

(1) $|V_b^1| = 0$ 时. $\Rightarrow V(H) = V(C_i) UV(H_c^1)$ \ $\{v_{C_i}\}, E(H) = E(H_c^{\downarrow}) UE(C_i) \cdot \text{Fix} H EU_{h(G_c)}(G),$ 即 H 满足定理 1 中属于 $EU_n(G)$ 五个条件 · 显然 H满足(i)和(ii). 由 He的选取(He为 EUh(Ge)(Ge)中 顶点个数最多的图)可知 H 中包含了 G 中所有两个 端点都属于 $V(C_i)$ 枝,再根据断言 1,可知 H 满足 (w)和(v). 要证 H满足(iii), 只需考虑这样的(使 $d_G(K, H-K) \ge 2$)的 H的子图 K. 因为 $C_i \subseteq H$ 且 C_i 为连通图,所以 $V(K)IV(C_i) = AE$ 或者 V(K)IV $(C_i) = V(C_i) \cdot \Leftrightarrow K' = K/C_i, \text{ } \not\text{ } \not\text{ } K' \subseteq H', \Leftrightarrow p' = x'$ $u_1 u_2 \Delta u_{ij}$ 是 G 中从 K 到 H - K 的一条最短路, 显 $\mathfrak{K}_{u_1, u_2, \Lambda, u_t} \subseteq V(G)$, 由 K'的定义知 $\exists x \in V$ (K), $\gamma \in V(H-K)$, 满足 xu_1 , $u_t \gamma \in E(G)$, 所以 p $= xu_1 u_2 \Lambda u_t y$ 是一条从 K 到 H - K 的路. 所以 d_G $(K, H-K) \le |E(p)| \le |E(p')| = d_G(K', H'-K')$ $\leq h(G')-1$, 则 $H \in EU_{h(G')}(G)$. 所以 $h(G) \leq h$ $(G^{'})$.

(2) $|V_b^1| \ge 2 \cdot \Leftrightarrow C_i = w_1 w_2 \Delta w_i w_1 \cdot M_i w_1, w_2, L,$ w_i 中接下标从小到大(模 i)的顺序依次取 V_b^1 中的点,记为 $u_1, v_1, u_2, v_2, \Delta, u_s, v_s$; 用 $p(u_j, v_j)$ 记在 C_i 上从 u_j 到 v_j 的路(选择下标从小到大模(i)的那一条) · V_b^1 中的这 2S 个点将 C_i 分成 2S 段,我们假设 $p(u_1, v_1)$ 为这 2S 条路中路长最长的 · $\Leftrightarrow p(V_b^1) = \sum_{j=1}^s p(u_j, v_j)$ (在满足 $p(u_1, v_1)$ 为 2S 条路中最长的前提下,使 $|E(p(V_b^1))|$ 最大) · $\Leftrightarrow V(H) = V(H_b^1) \setminus \{v_{c_i}\} U_{j=3}^c V_j(G) UV(p(V_b^1)), E(H) = E(H_b^1) U_j^2 \in E(p(V_b^1))\}$ · 下证 H 满足定理 1 中的 5 个条件 · 由

H的构造可知 H 满足(i),(ii). 对于任意枝 b ∈ B(G),若 E(b)IE(H)=f且 $E(b) \in E(C_i)$,则 E $(b) \le k+1 \le h(G')+1.$ (否则若 $E(b) \ge k+2$,则 由 $p(u_1, v_1)$ 的选取,有 $|E(p(u_1, v_1))| \ge k+2$,所 以 $|c_i| \ge 2k+4$,与 $|c_i| \le 2k+3$ 矛盾).则由 H'的 选取以及断言 1 知 H 满足(\dot{w})和(v). 下面证 H 满 足(iii),只需考虑这样的(使 $d_G(K, H-K) \ge 2$ 的 H的子图 K. 因为 $p(u_i, v_i) \subseteq H$ 且 $p(u_i, v_i)$ 为连通图, 所以 $V(K)IV(p(u_i, v_i)) = AE$ 或者 $V(K)IV(p(u_i, v_i))$ (u_i, v_i)) = $V(p(u_i, v_i))$ · K 的选取分两种情况讨 论:①若 $V(K)IV(C_i)IV(H) = AE$ 或 V(K)IV $(C_i)IV(H) = V(H)IV(C_i), \Leftrightarrow K' = K/C_i \supseteq K' \subseteq$ H'.令 $p' = x'u_1u_2 \cdots u_t y'$ 是G'中从K'到H' - K'的一 条最短路,由 K 的选取,则 $\exists x \in V(K), y \in V(H-$ K),满足 $xu_1, u_t y \in E(G)$,所以 $p = xu_1 u_2 \cdots u_t y$ 是 一条从K到H-K的路,所以 $d_G(K,H-K) \leq |E|$ $|(p)| = |E(p')| = d_G(K', H' - K') \le h(G') - 1.$ 否则令 $V_1 = V(K)IV(C_i)IV(H), V_2 = \{V(C_i)IV(H)\}$ (H) \ V_1 , 因为 $d_G(K, H-K) \leq d_{C_i}(V_1, V_2)$, 所以 若证得 $d_{C_1}(V_1, V_2) \leq k-1$,则 $d_G(K, H-K) \leq k-1$ $\leq h(G')-1$,则 H满足(iii).下面证 $d_{C}(V_1,V_2)\leq$ k-1, 也分两种情况讨论:

情况 1 当 $|V_b^1|$ = 2. 因为要么 $V(K)IV(p(u_1, v_1))$ = AE 要么 $V(K)IV(p(u_1, v_1))$ = $V(p(u_1, v_1))$, 所以 $V_b^0I(V(C_i) \setminus V(p(u_1, v_1)))$ (否则属于上面情况①). 所以 V_1 或 V_2 中必包含 V_b^0 中的点, 所以 $V_{c_i}(V_1, V_2)$? k 1 $(Q \mid C_i \mid$? 2k 3 且 $E(p(u_1, v_1))$? k 2) 得证.

情况 2 当 $|V_b^1| \ge 4 \Lambda(a)$

若 $d_{C.}(V_1, V_2) \geq k \Lambda(b)$

由 $p(u_1,v_1)$ 的选择假设,则 $|E(p(u_1,v_1))| \ge k\Delta(c)$

在 C_i 从 V_1 到 V_2 的路至少有两条· 因为 dc_i $(V_1, V_2) \geq k$ 所以另一条路长 $\geq k \Lambda(d)$ 又因为 $|E(p(u_2, v_2))| \geq 1 \Lambda(e)$

所以 $|C_i|$? $|E(p(u_1, v_1))|$ $|E(p(u_2, v_2))|$ $+2d_{C_i}(V_1, v_2)$? 3k 1L(f)

当 $k \ge 3$ 时,3k+1>2k+3,则与 $|C_i|\le 2k+3$ 矛盾,所以 $d_{C_i}(V_1,V_2)\le k-1$. 又当 k=2 时,3k+1=2k+3,所以只有(f)式取等号才不会产生矛盾,而(f)式取等号当且仅当(a)、(b)、(c)、(d)、(e)同时取等号,则 $C_{2k+3}=C_7$,且 V_b^1 中的四个点 u_1,v_1,u_2,v_2 在 C_7 上的顺序只有如图 1 所示的一种情况(否则 $d_{C_i}(V_1,V_2)\le 1$)这样与我们使 $|E(p(V_b^1))|$ 最大矛盾,只有按图 1 中小括号内标的方式选取才能使 $|E(p(V_b^1))|$ 最大。所以这种情况不存在,则 $d_{C_i}(V_1,V_2)\le k-1$,所以 H 满足(iii),则 $h(G)\le h$ (G'),证毕。

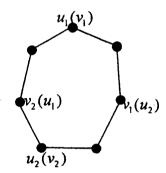


图 1 G = C7

注记: 为了利用定理 1, 我们必须保证 $h(G) \ge 2$. 定理 3 中的条件 $h(G') \ge k$ 是必不少的 (例如图 2 中这样一个例子, h(G) = 2 与定理 3 中条件对应,取 k = 2, 若不保证 $h(G') \ge k$, $\Theta h(G') = h(G|_{C_i}) = 1$,则 $h(G) \ne h(G')$) · 而且定理 3 中圈可收缩的长度范围是最好可能的 · (如图 3 中这样一个例子, 在 G 中枝 b_1 , b_2 , b_3 的长度相等且长为 k + 2, 枝 b_4 长度为 k, C_{2k+4} 是由枝 b_1 , b_2 构成的圈 · 由[3]知 h (G) = k + 1, G 收缩 C_{2k+4} 后, $h(G') = h(G|_{C_{2k+4}}) = k$,则 $h(G) \ne h(G')$,所以可收缩的圈最长为 2k + 3).

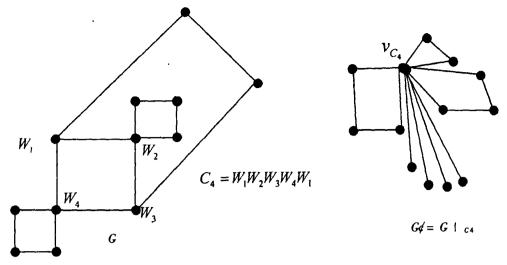


图 2 $h(G) = 2 \, \overline{n} \, h(G \mid c_4) = 1$

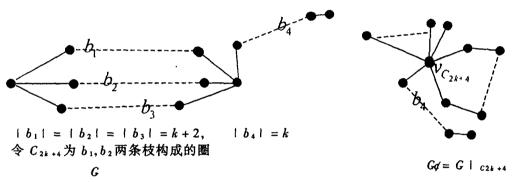


图 3 h(G) = k + 1 而 $h(G \mid_{C2k+4}) = k$

参考文献:

- [1] Bondy, J.A. Murty, U.S.R. Graph theory with applicatons Macmillan, London and Elsevier, New York, 1976.
- [2] L. Xiong, Z. Liu, Hamiltonian iterated line graph, Discrete Math. 256(2002)47-422.
- [3] L. Xiong, H. J. Broersma, The hamiltonian index of a graph and
- its branch bands. Discrete Math. 285(2004)27288.
- [4] L·Xiong· Zdenek Ryjacek· On stability of the Hamiltonian index under contractions and closures· J Graph Theory (2004) 104-115.
- [5] Zdenek Ryjacek, R. H. Schelp, Contractibility techniques as a closure concept. J Graph Theory (2002).

On Stability of the Hamiltonian Index under Contractions of the Cycle

YAO Xue-li¹, LIU Zhan-hong¹, XIONG Li-ming², WANG Lu¹

 $(1\cdot Institute\ of\ Mathematics\ Alignment\ Mathematics\ Beijing\ Institute\ of\ Technology\ Beijing\ 100081\ China)$

Abstract: The Hamiltonian index of a graph G is the smallest integer k such that the k-th iterated line graph of G is Hamiltonian. Xiong Liming et al[3] and [4] prove that neither the contraction of all nontrivial components of $G[\{v: d_G(v) \ge 3\}]$ nor the contraction of an $A_G(F)$ contractible subgraph F affacts the value of the Hamiltonian index of a graph. In this paper, we show that the contraction of a cycle of a graph G which satisfies some conditions also does not affets its Hamiltonian index.

Key words: Hamiltonian index; branch; contraction.

中国知网 https://www.cnki.net