文章编号:1005-0523(2006)05-0128-02

A·Kotzig 关于自补图的一个问题

周尚超

(华东交通大学 基础科学学院,江西 南昌 330013)

摘要: $A \cdot \text{Kotzig}$ 提出这样一个问题:对于任意正则自补图 G,是否存在 G 的一个自补置换s, s 是 $\{1,4,4,\dots,4\}$ 型,定理 1 否定地回答了这个问题.

关键词:图论;自补图;自补置换

中图分类号: O157.5

文献标识码: A

 $\rightarrow ts[u,v] = [ts(u),ts(v)] \in E(G) \rightarrow xts[u,v] = [xts(u),xts(v)] \in C(G).$ 由此得引理 1.

引理 1 设 G 是自补图,则 G 的奇数个自补置换之积是 G 的自补置换, G 的偶数个自补置换之积是 G 的自同构, G 的自同构与自补置换之积是自补置换.

设 $G_1 = C_m \le A >$, $G_2 = C_m \le B >$. 若 $r \le m$ 互素且 $rA = \{ ra \mid a \in A \} = B$, 则 $G_1 \le G_2$ 同构, $i \rightarrow ri$

是 G_1 到 G_2 的同构映射: $[i,j] \in E(G^1) \longleftrightarrow i-j$ $\in A \longleftrightarrow r(i-j) = ri - rj \in B \longleftrightarrow [ri,rj] \in E$ (G_2) . 若 $A \cup B = \{1,2,\ldots,m-1\}$, $A \cap B =$ 空集,则 $C_m \le A \ge E$ $C_m \le B \ge$ 的补图.

引理 2 设 G 是自补图,则|Aut(G)| = |P(G)|

证明 设 $P(G) = \{s_1, s_2, \dots, s_n\},$ 则 $\{s_1s_i, s_2s_i, \dots, s_ns_i\}$ 是 G 的自同构, $|P(G)| \leq |Aut(G)|$, 设 $Aut(G) = \{s_1, s_2, \dots, s_n\}$,

x 是 G 的自补置换,则 $\{xs_1, xs_2, ..., xs_n\} \in P$ $(G), |Aut(G)| \le |P(G)|$

定理 1 设 $G = C_{17} < A >$, $H = C_{17} < B >$, 其中 $A = \{1, 2, 4, 8, 16, 15, 13, 9\}$, $B = \{3, 6, 12, 7, 14, 11, 5, 10\}$,

设映射 s 为: $i \rightarrow 3i$, 即 s = (0)(1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6),设 x = (0,1,2,...,16),则有

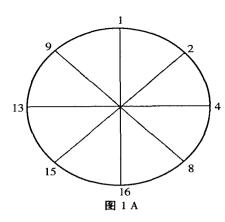
- 1) G 是正则自补图, H = C(G)
- 2) $P(G) = \{x^{-j}s^{2i+1}x^{j} | i=0,1,2...,7; j=0, 1,2,...,16\};$
- 3) P(G) 中任意元是 $\{1, 16\}$ 型且|P(G)| = 136;

收稿日期:2006-01-24

基金项目:江西省自然科学基金资助(0511016)和国家自然科学基金资助(10661007)

作者简介:周尚超(1948-),男,云南蒙自人,教授.

(C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net



 $s \in P(G) \rightarrow s^2 = d = (0)(1, 9, 13, 15, 16, 8, 4, 2)$ $(3, 10, 5, 11, 14, 7, 12, 6) \in F$. G 的以A(B)为顶点集的导出子图仍用A(B)表示,(图 1 给出 A). A 与 $C_8 < A_1 >$ 同构,这里 $A_1 = \{1, 4, 7\}$. $s_1 = (1, 9, 13, 15, 16, 8, 4, 2) \in Aut(A)$, $t_1 = (1)(2, 9)(4, 13)(8, 15)(16) \in Aut(A)$. 孙良证明了 3 度正则连通 m 阶 (m > 8)循环图的自同构群是二面体群. 因此 $Aut(A) = < s_1, t_1 >$ (由 s_2, t_1 生成的群). 设 $i \in A$. 与 i 邻接的 B 中的顶点集用 B_i 表示. $B_2 = \{6, 3, 10, 11\}$, B_1

 $\{3, 10, 5, 14\}, B_9 = \{10, 5, 11, 7\}$ $B_{13} = \{5, 11, 14, 12\}, B_{16} = \{14, 7, 12, 3\}, 0 与 A$ 中任意点邻接,0 与 B 中点不邻接. 故对任意 $b \in F$, 有 $b = (0) b_1 b_2$. 其中 $b_1 \in Aut(A)$, $b_2 \in Aut(B)$. 设 $b \in F$. 对 $i \in A$, $k \in B_i$, 若 b(i) = j, 则 $b(B_i) = B_j$, $b(k) \in B_j$.

Aut(A)是 16 阶可迁群, Aut(A)中使 1 不变的元素只有 t_1 和 $e_1(Aut(A)$ 的单位元). 设 b(1) = 1, 则 $b_1 \in \{t_1, e_1\}$, $b(16) = b_1(16) = 16$, $b(B_1) = B_1$, $b(B_{16}) = B_{16}$. $3 \in B_1 \cap B_{16} \rightarrow b(3) \in B_1 \cap B_{16} = \{3, 14\}$. 若 $b(2) = b_1(2) = 9$, 则 $b(B_2) = B_9$. $3 \in B_2 \rightarrow b(3) \in B_9$. 但 $B_1 \cap \{3, 14\} =$ 空集,因此 $b_1(2)! = 9$, $b_1 = e_1$. $b_1 = e_1 \rightarrow$ 对任意 $i \in A$, b(i) = i, $b(B_i) = B_i \rightarrow$ 对 $j \in B_i$, $b(j) \in B_i$. $3 \in B_2 \cap B_{16} \rightarrow b(3) = 3$; $t \in B_9 \cap B_{16} \rightarrow b(7) = 7$; $11 \in B_2 \cap B_1 \cap B_1 \cap B_2 \cap B_1 \cap B_1 \cap B_1 \cap B_2 \cap B_1 \cap B_1 \cap B_1 \cap B_1 \cap B_1 \cap B_1 \cap B_2 \cap B_1 \cap B$

→b(10) ∈ B_1 ∩ B_2 ∩ B_9 →b(10) = 10 . 6 ∈ B_2 → b(6) ∈ B_2 = {6, 3, 10, 11}, 由于 b(i) = i, i = 3, 10, 11, 故 b(6) = 6; 同理有 b(5) = 5, b(14) = 14, b(12) = 12. 这就证明了: b(1) = 1 可推出 b = e(F) 的单位元). 若 b(1) = a, 则存在 j, 使 d(a) = 1. db(1) = 1 → db = e, b = d – j ∈ d (由 d 生成的群), F 中任意元 b ∈ d >, 因此 F = d > E 8 阶群, |Aut(G)| = 136.

 $B_{13} \rightarrow b(11) \in B_2 \cap B_{13} \rightarrow b(11) = 11; 10 \in B_1 \cap B_2$

参考文献:

 $\bigcap B_9$

- [1] Bondy \cdot J \cdot A \cdot , and Mutty \cdot U \cdot S \cdot R \cdot , Graph Theory Related Topics [M] \cdot Academic Press \cdot New York and London \cdot 1979
- [2] 孙 良.循环图的自同构群[J].北京工业学院学报,1988 (1),1-5.

A Problem Concerning the Self-Complementary Graphs by A. Kotzig

ZHOU Shanq-chao

(East China Jiaotong University · Nanchang 330013, China)

Abstract: A·Kotzig[1] presented the following problem: "Is it true that, for every regular self-complementary graph G, there is at least one isomorphism permutation p such that, except for the cycle of length one, every cycle of p is of length exactly four?" we construct a counterexample to show the answer is negative.

Key words: graph theory; self—complementary graph