文章编号:1005-0523(2007)05-0142-02

图的循环自同构群

周尚超,邓毅雄

(华东交通大学,江西 南昌 330013)

摘要:证明了对于 n 阶循环群 $C_n(n \ge 3)$, 存在 3n 个点, 5n 条边的图 G_n , 且 G_n 的自同构群 $\Gamma(G_n)$ 与 G_n 同构 .

关键词:自同构群;循环群;图

中图分类号:0157.5

文献标识码:A

1 引言

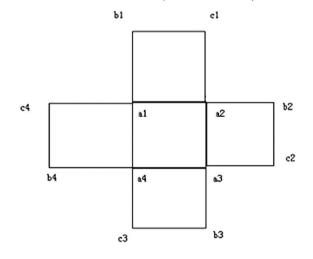
本文采用[1]中的记号和术语 · 图均指无向简单图 · [1]中证明了对于任意有限抽象群 Γ ,都存在图 G,使得 G 的自同构群与 Γ 同构,但是对于 n 个点的置换群 Γ ,不一定存在 n 个点的图 G 以 Γ 为自同构群 · 例如设 $\Gamma = <(v_1 \ v_2 \cdots v_n)>$ 是由 $(v_1 \ v_2 \cdots v_n)$ * 为顶点的图的自同构群都不是 Γ · [1]中所述的图有较多的顶点和边,对于循环群 C_n ,Frucht 作出有较少顶点的图 Frucht 证明了 C_n · C_n

$$+\sum_{(a_j a_{j+1} + c_j a_{j+1})} + \sum_{a_1 a_n + a_1 c_n + \sum_{c_k c_l}}$$

二次型的每个项表示 1 条边, 在这个图中, 按二次型 Q, Frucht 构造的图是这样的: $A = \{a_1 \ a_2 \cdots a_n\}$ 导出的子图是圈 $a_1 \ a_2 \cdots a_n \ a_1 \cdot C = \{c_1, c_2, \cdots, c_n\}$ 导出的子图是一个图 $P = \{a_1 \ a_2 \cdots a_n \ a_n\}$ 导出的子图

导出的子图是圈 a_1 $a_2 \cdots a_n$ $a_1 \cdot C = \{c_1, c_2, \cdots, c_n\}$ 导出的子图是完全图, $B = \{b_1, b_2, \cdots, b_n\}$ 导出的子图是空图. $a_i = b_j$ 邻接当且仅当 i = j; $c_i = b_j$ 邻接当

且仅当i=j; c_i 与 a_j 邻接当且仅当j=i+1 mod n; 在 [3]中的图 G6.51.2 中画出了 n=4 的情形图 2. 我们指出这个图的群不是 4 阶循环群,他少画了 1 条边,应把 c_1 c_3 邻接才对 · 按 Frucht 的方法, $Q(G_n)$ 的最后 1 项是 c_kc_l 表明用 c 标志的任意 2 点是邻接的 · 我们将群为 C_4 的图按所述作如下图 · 任意 2 个 c 是邻接的图中未画出(那样会显得乱)



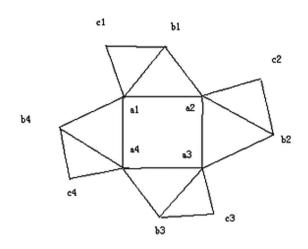
Frucht 的图有较多的边(共 $(n^2+7n)/2$ 条),本文构造出群为 C_n 有 3n 个点 5n 条边的图,比 Frucht 的 $(n^2+7n)/2$ 条边少.

定理 若 $n \ge 3$,则存在 3n 个点的图 G_n ,使 $\Gamma(G_n)$ 与 G_n 同构且 G_n 有 5n 条边.

收稿日期:2007-07-19

基金项目:江西省自然科学基金项目(051106);国家自然科学基金项目(10661007).

证明 G_n 的顶点是 a_i , b_i , c_i , i=1,2,...,n, A $=\{a_1, a_2, \dots, a_n\}$ 导出的子图是圈 $a_1 a_2 \cdots a_n a_1 \cdot B$ $=\{b_1, b_2, ..., b_n\}$ $C = \{c_1, c_2, ..., c_n\}$ 导出的子图是 空图 a_i 与 b_i 邻接当且仅当 i=j; c_i 与 b_i 邻接当且仅 当 i=j; c_i 与 a_i 邻接当且仅当 j=i. 下图给出了 n=i4 时的图 G_4 . 令 $s=(a_1 a_2 \cdots a_n)(b_1 b_2 \cdots b_n)(c_1 c_2 \cdots$ (c_n) ,则 $s \in G_n$ 的自同构 A 中点的度是 5, B 中点的 度是 3, C 中点的度是 2. 因此对于 G_n 的任意自同 构 t, 有 t(A) = A, t(B) = B, t(C) = C. 当 t 限制在 A 上时是 G(A)的自同构 · 若 $t(a_1) = a_1$ 则与 a_1 邻 接的度为 2 的点 c_1 映射为 c_1 , 即 $t(c_1) = c_1$. 与 c_1 和 c_1 都邻接的度为 3 的点 b_1 映射为 a_1 和 c_1 都邻 接的度为 3 的点 b_1 , 即 $t(b_1) = b_1$, 由此可推出 t $(a_2) = a_2, t(c_2) = c_2, t(b_2) = b_2, \dots$, 因此由 $t(a_1)$ $= a_1$ 可推出 $t = E \cdot E$ 为群的单位元·根据群论,含 a_1 的轨道有 n 个元素. G_n 的自同构只有 n 个元素. G_n 的自同构群是 n 阶循环群< s > 它的边数为(5n+3n+2n)/2=5n.



参考文献:

- [1] F. 哈拉里·图论(李蔚萱译)[M]·上海:上海科学技术 出版社,1980.
- [2] Frocht, R. Graphs of degree three with a given abstract group [J], CanadaJ, Math. 1949, (1): 365—378
- [3] 卡波边科, 莫鲁桌 · 图论的例和反例[M] · 长沙: 湖南科 学技术出版社, 1988

The Graph with Cyclic Automorphism Group

ZHOU Shanq-chao, DENG Yi-xionq

(East China Jiaotong University, Nanchang 330013, China)

Abstract: In this paper, we exhibited graphs G_n with Cyclic group G_n and G_n has 3n points and 5n lines $(n \ge 3)$. **Key words**: graph; automorphism group; cyclic group;