文章编号:1005-0523(2018)04-0097-09

考虑钢轨铁磁特性的牵引网阻抗频变参数矩阵计算

刘思然,陈剑云,乐 果

(华东交通大学电气与自动化工程学院,江西 南昌 330013)

摘要:行波故障测距装置因行波在线路中传播的色散现象而难以准确计算波速,影响测距精确性,而行波色散主要原因来自于 线路阻抗的依频特性。牵引网中钢轨与其他导线不同,具有特殊性,本文通过软磁材料磁性能检测中的冲击法对钢轨的磁特性 进行检测,得到了 P60 钢轨基本磁化曲线、磁滞回线和矫顽力等磁特性数据,以此数据使用有限元仿真软件计算出钢轨精确的 阻抗频变参数,在此基础上通过平行多导体传输线理论计算出充分考虑钢轨特殊铁磁特性的牵引网阻抗、导纳频变参数矩阵, 为牵引网行波故障测距的研究提供线路阻抗的计算方案和数据基础。

关键词:钢轨;频变参数;磁化曲线;行波故障测距;有限元

中图分类号:TM922 文献标志码:A

随着我国电气化铁路的快速发展,铁路成为国民经济的支柱,也是人们出行大多选择的交通工具。但铁路牵引网由于长期暴露在自然环境之中,又有机车受电弓的不断冲击,短路故障时有发生,快速、精确的故障定位技术是保证铁路安全、可靠运行的关键。行波故障测距是目前潜力比较大的故障定位技术,其定位是依靠故障发生时在线路中行波的传播时间和波速的乘积来计算故障发生的位置,所以波头的检测和波速的计算是影响行波故障测距精度的主要因素。

由于色散现象使得不同频率的行波分量具有不同的波速,而线路参数是影响行波色散的主要因素^{II}。文 献[2-3]研究了牵引网电气参数的依频特性,得出了牵引网参数计算具有较高复杂度的结论。文献[4]提出一 系列牵引网参数的计算方法具有参考价值。文献[5-6]采用了平行多导体传输线理论计算牵引网的电气参 数,但是未考虑钢轨特殊的铁磁特性,精确度不能满足行波故障测距的需要。

在针对钢轨的研究中,20世纪初 MIT 研究小组就对钢轨的集肤效应进行了测试,文献[7]中,Hill 和 Carpenter 率先将复数磁导率引入钢轨内阻抗的计算中,后来在文献[8-9]中进一步使用电磁场有限元软件计 算钢轨内阻抗。文献[10]构建了一钢轨四参数等效管状导体模型来计算钢轨内阻抗,但其等效模型的外径计 算还是依赖于电磁场有限元软件,而且其钢轨为地铁系统的第三轨,与传统意义上的钢轨不太一样,后者在 计算其参数时需要考虑铁磁特性。钢轨的铁磁特性的研究属于基础研究工作,文献[11]中给出了"三个研究 部门"检测得到的钢轨 B-H 曲线,但钢轨具体型号没有说明,准确性无法考证,也没有具体的数据。文献[7] 在计算钢轨频变参数时,提供的数据来自英国铁路部门,是否适用于我国的牵引网电气参数的计算工作没 有验证过。所以钢轨磁特性的具体数据检测显得尤为重要。

本文首先检测了 P60 钢轨的磁特性,得到其基本磁化曲线、磁滞回线、矫顽力等磁特性的曲线和具体数据,再以此数据使用电磁场有限元软件计算了 P60 钢轨的内电感频变参数,在此基础上采用平行多导体传

收稿日期:2018-03-14

基金项目:国家自然科学基金项目(51467004)

作者简介:刘思然(1991—),男,硕士研究生,研究方向为牵引网电气参数计算。

通讯作者:陈剑云(1962—),男,教授,博士生导师,研究方向为电力系统监控及自动化、远动技术。

输线理论计算了牵引网的阻抗频变参数矩阵 $Z(\omega)$,导纳频变参数矩阵 $Y(\omega)$,为行波故障测距技术提供理论基础和参考数据。

1 钢轨磁特性检测

钢轨的主要成分为铁,同时又含有碳、磷、硅、锰等元素,是合金,也是典型的铁磁物质,容易被磁化且伴 有磁滞现象,磁导率不为定值且呈非线性变化。因磁导率会影响集肤效应的渗透深度,从而影响其阻抗的变 化,所以准确测量钢轨的磁特性是钢轨阻抗频变参数计算精确性的保证。

钢材的磁特性检测方法有许多种,常见的有冲击法、积分法、电压-电流表法、示波器法以及电桥法等。 冲击法是精度较高的一种,一般精度约为±1%。检测前需要将钢轨切割成特定形状的样条,一般分为条形样 条和环形样条,条形样条加工相对容易,但是误差会比环形样条高出 3%~5%。本文的检测选择冲击法和环 形样条,钢轨选择我国高速铁路常用的 P60 重轨。检测条件如下:

① 环境温度:20.2~21.4 ℃;② 环境湿度:(39.6~40.8)%RH;③ 磁场强度范围:0~20 000 A/m;④ 样条尺寸:内径 50 mm,外径 60 mm,宽度 10 mm。

环境条件符合中华人民共和国国家标准 GB/T 28869.1-2012/IEC 62044-1:2002 对软磁材料检测的要求。 检测获得 P60 钢轨基本磁化曲线,如图 1 所示,以及其数据点 190 个;P60 钢轨磁滞回线如图 2 所示, 以及其数据点 8 192 个;P60 钢轨其他磁特性参数,如表 1 所示。

表 1 P60 钢轨其他磁特性参数 Tab.1 Other magnetic property parameters of P60 steel rail

饱和磁感应强 度/mT	剩余磁感应强 度/mT	矩形比	矫顽力/(A/m)	振幅磁导率	最大磁导率	损耗/(kW/m³)
1 678.3	1 032.9	0.615 5	3 974.9	67.126	210.3	1 373.7

2 钢轨阻抗频变参数有限元仿真及其等效半径计算

钢轨不同与其他导线,具有特殊的铁磁特性以及"工"字型的不规则截面,使其阻抗频变参数不能用与 其他导线相同的计算方法。有限元方法在处理此类导线方面取得了良好的效果。有限元法是一种数值计算 方法,其基本思想是将连续系统分割成有限个分区或者单元,对每一个单元得出一个近似解,再将所有单元 的解按照一定的方法组合成一个与原系统近似的整体,以得出一个原系统的近似解。这样就将一个本来非常复杂的微分方程问题转化成了一个变分问题的求解。本文使用有限元仿真软件 Ansys-Maxwell 中的涡流 场求解器对 P60 钢轨的阻抗频变参数进行计算。

P60 钢轨的模型由 AutoCAD 绘制,再导入 Ansys-Maxwell 中。在钢轨模型外绘制两层圆圈,第一个半径 为 r=140 mm 作为电流回流的壳,第二个半径为 a=1 m 用于设置仿真计算的边界条件,一般选择狄里克莱边 界条件。材料属性设置中选择自定义材料属性,在相对磁导率一栏选择"Nonlinear"选项,随后弹出 B-H 曲 线编辑界面,在该界面导入第一节获得的 P60 钢轨磁化曲线数据。材料电导率取文献[12]中给出的碳钢电导 率 6×10⁶ S/m。矫顽力一栏填入第一节获得的 P60 钢轨矫顽力数据,为 3 974.9 A/m。

由于集肤效应的影响,在极高频率下可以认为此时电流只附着与钢轨的表面,其内部没有电流,在这种 情况下的电感数据可以认为是钢轨在有限元仿真的外部条件下的外感,而外感会根据周围条件的变化而不 同,所以钢轨的内电感才是有效的数据。将所有频率的计算结果减去该外感即是钢轨的内电感数据。P60 钢 轨有限元仿真计算的部分结果如表 2 所示,电阻数据曲线如图 3 所示,内电感数据曲线如图 4 所示。

频率/Hz	电阻/(Ω/m)	电感/(mH/m)			
5	3.769 8×10 ⁻⁵	0.001 114 1			
50	0.000 117 09	0.000 786 7			
500	0.000 392 33	0.000 628 6			
5 000	0.001 472 9	0.000 543 4			
50 000	0.003 908 2	0.000 514 7			
500 000	0.005 406 4	0.000 509 8			
5 000 000	0.006 166 8	0.000 508 41			
$7^{\times 10^{-3}}$ 6^{-} 5^{-} 1^{-} 2^{-} 1^{-} $1^$	2.5 ^{×10⁻³} 2.0 (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-) (mg1.5-				
10 ⁻¹ 10 ⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ 频率/Hz	$10^{\circ} 10^{\circ} 10^{7} 10^{7}$	10° 10° 10° 10° 10° 10° 10° 10° 10°			
图 3 P60 钢轨电阻频变参数 Fig 3 Frequency variation parameters of	E Fig 4 Fig	图 4 P60 钢轨内电感频变参数			
registance	riov steer rain rig.4 ri	rig.4 Frequency variable parameters of internal inductance in P60 steel rail			

表 2 P60 钢轨有限元仿真计算部分结果 Tab.2 Partial results of finite element simulation of P60 steel rail

从图 3、图 4 中可以看出,钢轨的电阻随着电流频率的增大而增大,在 10²~10⁴ Hz 内增长速度随电流频 率变快,而 10⁵ Hz 后,增长速度有所减缓。钢轨的内电感随电流频率增大而减小,10⁵ Hz 后内电感趋于 0,集 肤效应达到极致,电流基本完全附着在钢轨的表面上。

钢轨在极限频率 107 Hz 时的外感为

$$L_{\text{ext}}$$
=5.114 8×10⁻⁴ mH

(1)

钢轨的内电感因集肤效应的影响与电流频率有关,而钢轨的外电感只和电流路径的几何尺寸有关。 设钢轨的等效半径为 r_e,则有

$$L_{\infty} \cong L_{\text{ext}} = \frac{\mu_0}{2\pi} \cdot \ln \frac{r}{r_{\text{e}}}$$
(2)

可以得到

$$r_{\rm e} = r \cdot e^{-\frac{2\pi L L_{\star}}{\mu_0}} \tag{3}$$

式中:µ₀为真空磁导率;r为图3中第一个圆半径,可以计算出,P60钢轨的等效半径为r。=0.0109m。

3 牵引网阻抗和导纳频变参数矩阵计算

3.1 导纳矩阵计算方法

设有 n 条与地面平行又相互平行的导线,这样 n 条导线就与大地构成了一个多导线系统,则每一条导线 i 的对地电位 u_i 和该导线的电荷密度 q_i 满足如下方程

上述矩阵方程中**P**矩阵中各元素计算公式如下

$$p_{ii} = \frac{1}{2\pi\varepsilon_0} \ln \frac{2h_i}{r_i} \tag{5}$$

$$p_{ij} = \frac{1}{2\pi\varepsilon_0} \ln \frac{p_{ij}}{d_{ij}}$$
(6)

式中: p_{ii} 为导线 *i* 的自点位系数, F/km; p_{ij} 为导线 *i* 与导线 *j* 的互电位系数, F/km; u_i 为导线 *i* 对地点位, V; q_i 为导线 *i* 的线电荷密度, C/km; h_i 为导线 *i* 的平均高度, m; r_i 为导线 *i* 的半径, m; D_{ij} 为导线 *i* 与导线 *j* 镜像 之间的距离, m; d_{ii} 为导线 *i* 与导线 *j* 之间的距离, m。

$$\varepsilon_0 = \frac{1}{36\pi \times 10^6} \,\mathrm{F/km} \tag{7}$$

公式(4)可以写成矩阵方程形式

$$U=PQ \tag{8}$$

则

$$\boldsymbol{Q} = \boldsymbol{P}^{-1} \boldsymbol{U} = \boldsymbol{B} \boldsymbol{U} \tag{9}$$

$$B = P^{-1}$$

一般称 P 矩阵为电位系数矩阵, B 矩阵为电容系数矩阵, B 矩阵的各元素值由 P 矩阵求逆得到,则线路的导纳矩阵 Y 为

$$Y = j\omega B \tag{11}$$

3.2 阻抗矩阵计算方法

沿输电线路单位长度内的压降与导线电流之间存在由阻抗矩阵相联系的关系,即

[177]

$$-\begin{vmatrix} \frac{\mathrm{d}U_{1}}{\mathrm{d}x} \\ \vdots \\ \frac{\mathrm{d}U_{i}}{\mathrm{d}x} \\ \vdots \\ \frac{\mathrm{d}U_{n}}{\mathrm{d}x} \end{vmatrix} = \begin{vmatrix} Z_{11} & \cdots & Z_{1i} & \cdots & Z_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{i1} & Z_{ii} & Z_{in} \\ \vdots & \vdots & \vdots \\ Z_{n1} & \cdots & Z_{ni} & \cdots & Z_{nn} \end{vmatrix} \begin{vmatrix} I_{1} \\ \vdots \\ I_{i} \\ \vdots \\ I_{n} \end{vmatrix}$$
(12)

100

(10)

式中: Ui 为导线 i 的对地电位; Ii 为导线 i 中的电流。

将公式(12)改写为

$$\frac{\mathrm{d}}{\mathrm{d}x}\boldsymbol{U}=\boldsymbol{Z}\boldsymbol{I}$$
(13)

式(13)就是线路方程,U,I分别是n相导线的点位和电流矢量;Z被称为n相导线系统的阻抗矩阵。阻抗矩阵总各元素的计算相对复杂。

Ŷ

$$k = 4\pi\sqrt{5} \cdot 10^{-4} \cdot D\sqrt{\frac{f}{\rho}}$$
(14)

式中:D在计算自阻抗时为导线平均高度,m; 计算互阻抗时为导线i与导线j镜像之间的距离,m;f为电流 频率,Hz; ρ 为土壤电阻率, Ω/m_{\odot}

及

$$\theta = \sin^{-1} \left(\frac{x_{ij}}{D_{ij}} \right) \tag{15}$$

设由有限元仿真软件计算出不同频率下的钢轨电阻为 R_r,内电感为 L_{int},则阻抗矩阵各元素的计算共分为 6 种不同的情况,分别为

1) 非钢轨导线、k<5、计算自阻抗时用以下公式

$$Z_{ij} = \pi^2 f \cdot 10^{-4} + \frac{mr}{2} \left[\frac{bermr \cdot beimr - beimr \cdot bermr}{(bermr)^2 + (beimr)^2} \right] \cdot \frac{\rho}{\pi r^2} + j\omega \cdot 2 \cdot 10^{-4} \ln \frac{D_g}{r}$$
(16)

2) 非钢轨导线、k>5、计算自阻抗时用以下公式

$$Z_{ii} = \frac{\mu}{2\pi} \ln \frac{2h_i}{r} + \frac{mr}{2} \left[\frac{bermr \cdot beimr - beimr \cdot bermr}{(bermr)^2 + (beimr)^2} \right] \cdot \frac{\rho}{\pi r^2} + \frac{4}{mr} \left[\frac{beimr \cdot beimr + bermr \cdot bermr}{(bermr)^2 + (beimr)^2} \right] \cdot \frac{\mu}{8\pi} + \frac{4\omega \cdot 10^{-4}}{\sqrt{2}} + \frac{4\omega \cdot 10^{-4}}{$$

$$\left[\frac{\cos\theta}{k} - \frac{\sqrt{2}\cos2\theta}{k^2} + \frac{\cos3\theta}{k^3} + \frac{3\cos5\theta}{k^5} - \frac{45\cos7\theta}{k^7}\right] + j\frac{4\omega \cdot 10^{-4}}{\sqrt{2}} \left[\frac{\cos\theta}{k} - \frac{\cos3\theta}{k^3} + \frac{3\cos5\theta}{k^5} - \frac{45\cos7\theta}{k^7}\right]$$
(17)

3) 钢轨、k<5、计算自阻抗时用以下公式

$$Z_{ii} = j\omega \frac{\mu}{2\pi} \ln \frac{2h_i}{r_e} + R_r + j\omega L_{int} + \pi^2 f \cdot 10^{-4} + \omega \frac{\mu}{2\pi} \ln \frac{e^{0.616}}{k}$$
(18)

4) 钢轨、k>5、计算自阻抗时用以下公式

$$Z_{ii} = j\omega \frac{\mu}{2\pi} \ln \frac{2h_i}{r_e} + R_r + j\omega L_{int} + \frac{4\omega \cdot 10^{-4}}{\sqrt{2}} \left[\frac{\cos\theta}{k} - \frac{\sqrt{2}\cos 2\theta}{k^2} + \frac{\cos 3\theta}{k^3} + \frac{3\cos 5\theta}{k^5} - \frac{45\cos 7\theta}{k^7} \right] + j\frac{4\omega \cdot 10^{-4}}{\sqrt{2}} \left[\frac{\cos\theta}{k} - \frac{\cos 3\theta}{k^3} + \frac{3\cos 5\theta}{k^5} - \frac{45\cos 7\theta}{k^7} \right]$$
(19)

5) k<5、计算互阻抗时用以下公式

$$Z_{ii} = \pi^2 f \cdot 10^{-4} + j\omega \cdot 2 \cdot 10^{-4} \ln \frac{D_g}{d_{ij}}$$

$$\tag{20}$$

6) k>5、计算互阻抗时用以下公式

$$Z_{ii} = j\omega \ln \frac{D_g}{d_{ij}} + \frac{4\omega \cdot 10^{-4}}{\sqrt{2}} \left[\frac{\cos\theta}{k} - \frac{\sqrt{2}\cos2\theta}{k^2} + \frac{\cos3\theta}{k^3} + \frac{3\cos5\theta}{k^5} - \frac{45\cos7\theta}{k^7} \right] + j\frac{4\omega \cdot 10^{-4}}{\sqrt{2}} \left[\frac{\cos\theta}{k} - \frac{\cos3\theta}{k^3} + \frac{3\cos5\theta}{k^5} - \frac{45\cos7\theta}{k^7} \right]$$
(21)

式中: ω 为电流角频率, rad/s; f 为电流频率, Hz; D_g 计入大地电感时的大地镜像等值深度, $D_g \cong 660 \sqrt{\frac{\rho}{f}}$ 。

3.3 导线合并计算方法

牵引网中导线非常多,复线牵引网至少有 14 根导线,如果每一根导线都列为单独的元素出现在矩阵中,矩阵将会变得非常庞大,也不利于行波故障测距中的分析,所以采用合并导线的方法,将 14 根导线合并 至 6 根,简化计算。

一般来说,合并导线有两种常用的方法,第一种逐步合并法,第二种等值半径合并法。等值半径合并法 大多适用于按正多边形规则排列的导线,比如高压输电线,对于牵引网排列相对不规则,是非换位的多传输 线系统,所以采用第一种逐步合并法比较合适。下面以导纳矩阵为例,介绍合并的方法,阻抗矩阵合并方法 与导纳矩阵相同。

若希望将公式(4)中的4根导线 *i*,*l*,*m*,*n* 合并为一条导线,并求出它的等效电容参数,首先应满足两个条件:

1) 合并后导线的电荷量等于合并前各导线的电荷量之和

$$q_a = q_i + q_l + q_m + q_n \tag{22}$$

2) 合并后的导线与合并前的各导线对地电位相同

$$u_a = u_i + u_l + u_m + u_n \tag{23}$$

合并的过程分为两步:

1) 设合并后的导线电荷为 q_a ,将 q_a 替换方程(4)中的 q_i ,根据公式(22)的条件,方程(4)右边第 i 列均会 多出一个误差项 ΔP ,则有

$$\Delta P = P_{\mu i}(q_i + q_m + q_n)$$

$$\mu = 1, 2, 3, \cdots, n$$

$$(24)$$

为了保持原来的公式恒等,必须减掉 ΔP,这就需要从电位系数矩阵 *l*,*m*,*n* 中各列元素均对应的减去 *i* 列元素,成为以下方程

$$\begin{bmatrix} u_{1} \\ \vdots \\ u_{i} \\ \vdots \\ u_{i} \\ u_{i} \\ \vdots \\ u_{i} \\ u_{n} \\ u_{n} \\ u_{n} \\ u_{n} \end{bmatrix} = \begin{bmatrix} P_{11} & \cdots & P_{1i} & \cdots & P_{1i} - P_{1i} & P_{1m} - P_{1i} & P_{1n} - P_{1i} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{i1} & \cdots & P_{ii} & \cdots & P_{il} - P_{ii} & P_{im} - P_{ii} \\ P_{11} & \cdots & P_{1i} & \cdots & P_{il} - P_{1i} & P_{1m} - P_{1i} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{1m} - P_{1i} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{nm} - P_{ni} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{nm} - P_{ni} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{nm} - P_{ni} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{nm} - P_{ni} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{nm} - P_{ni} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{nm} - P_{ni} \\ P_{n1} & \cdots & P_{ni} & \cdots & P_{nl} - P_{ni} & P_{nm} - P_{ni} \\ P_{n} & P_{nn} - P_{ni} & P_{nn} - P_{ni} \\ P_{nn} & P_{nn} - P_{ni} & P_{nn} - P_{ni} \\ P_{nn} & P_{nn} \\ P_{nn} & P_{nn} \\ P_$$

2) 从公式(25)中系数矩阵的 l,m,n 三行元素均减去 i 行各对应元素得

$$\begin{bmatrix} u_{1} \\ \vdots \\ u_{a} \\ \vdots \\ u_{a} \\ \vdots \\ = \begin{bmatrix} P_{11} & \cdots & P_{1l} - P_{1i} & \cdots \\ P_{i1} - P_{ii} & \cdots & P_{il} - P_{ii} & \cdots \\ P_{i1} - P_{i1} & \cdots & (P_{il} - P_{ii}) - (P_{il} - P_{ii}) & \cdots \\ 0 \\ P_{n1} - P_{i1} & \cdots & (P_{nl} - P_{ni}) - (P_{il} - P_{ii}) & \cdots \\ 0 \\ P_{n1} - P_{i1} & \cdots & (P_{nl} - P_{ni}) - (P_{il} - P_{ii}) & \cdots \\ q_{n} \\ 0 \end{bmatrix}$$
(26)

再从方程(26)中消去 q_l,q_m,q_n,方法与上述方法相同,就不在赘述,完成 4 次上述计算后,*i*,*l*,m,n 4 根 导线就合并为了 1 根 a 导线,得到了合并后新的参数矩阵。

3.4 实例计算

以某复线高铁线路为例进行计算,其各导线位置参数如图 5 所示,单位为 mm;各导线型号及其参数如 表 3 所示。

图 5 牵引网导线位置关系示意图 Fig.5 Schematic diagram of the position relation of a traction wire

	表 3	牵引	网导线型号	及	稥数	
Tab.3	Model	and	parameters	of	traction	wire

线路名称	导线型号	等效半径/m	电导率/(S/m)
正馈线	LGJ-185	9.03×10 ⁻³	3.53×10 ⁸
承力索	TJ-95	4.74×10 ⁻³	1.85×10 ⁸
接触线	CTHA-120	4.60×10 ⁻³	1.79×10 ⁸
保护线	LGJ-120/20	7.22×10 ⁻³	3.53×10 ⁸
钢轨	P60	0.120 3	6.00×10^{6}

计算频率的步长即为有限元仿真计算的步长,如表4所示。

表 4 计算频率步长 Tab.4 Calculated frequency step length Hz						
频段	步长间隔	频段	步长间隔			
0.1~1	0.05	1 000~10 000	500			
1~10	0.5	10 000~100 000	5 000			
10~100	5	100 000~106	50 000			
100~1 000	50	10 ⁶ ~10 ⁷	500 000			

由上述参数和前文所述的计算方法,即可计算出牵引网阻抗频变参数矩阵 **Z**(ω),导纳频变参数矩阵 **Y**(ω),由于篇幅有限,仅展示部分计算结果。表 5 为部分牵引网阻抗频变参数矩阵 **Z**(ω)的结果。

	表 5	牵引网阻抗频变参	疹数矩阵部分数据	
Tab.5	Partial data of im	pedance frequency	parameter matrix	of traction network

频率/Hz	阻抗矩阵 Z /(Ω/km)					
	0.25+0.68i	0.05+0.30i	0.05+0.30i	0.05+0.24i	0.05+0.27i	0.05+0.25i
	0.05+0.30i	0.19+0.57i	0.05+0.30i	0.05+0.27i	0.05+0.30i	0.05+0.27i
	0.05+0.30i	0.05+0.30i	0.10+0.38i	0.05+0.25i	0.05+0.27i	0.05+0.28i
50	0.05+0.24i	0.05+0.27i	0.05+0.25i	0.25+0.68i	0.05+0.30i	0.05+0.30i
	0.05+0.27i	0.05+0.30i	0.05+0.27i	0.05+0.30i	0.19+0.57i	0.05+0.30i
	0.05+0.25i	0.05+0.27i	0.05+0.28i	0.05+0.30i	0.05+0.30i	0.10+0.38i
5 000	5.71+51.92i	5.02+15.45i	5.18+15.86i	4.81+10.24i	4.87+12.18i	4.76+11.36i
	5.02+15.45i	5.36+41.98i	5.05+14.95i	4.87+12.18i	4.91+15.89i	4.85+13.05i
	5.18+15.86i	5.05+14.95i	5.57+20.83i	4.76+11.36i	4.85+13.05i	4.69+13.78i
	4.81+10.24i	4.87+12.18i	4.76+11.36i	5.71+51.92i	5.02+15.45i	5.18+15.86i
	4.87+12.18i	4.91+15.89i	4.85+13.05i	5.02+15.45i	5.36+41.98i	5.05+14.95i
	4.76+11.36i	4.85+13.05i	4.69+13.78i	5.18+15.86i	5.05+14.95i	5.57+30.83i
500 000	564.2+3646.2i	530.7+37.85i	492.1+38.11i	269.3+123.9i	184.8+454.5i	441.3+116.7i
	530.7+37.85i	518.3+2709.9i	494.4+2.82i	184.8+454.5i	511.4+112.6i	463.8+35045i
	492.1+38.11i	494.4+2.82i	507.6+452.8i	441.3+116.7i	463.8+35.45i	468.5+95.00i
	269.3+123.9i	184.8+454.6i	441.3+116.7i	564.2+3646.2i	530.6+37085i	492.1+38.11i
	184.8+454.6i	511.4+112.6i	463.8+35.46i	530.7+37.85i	518.3+2709.9i	494.4+2.82i
	441.3+116.7i	463.8+35.45i	468.4+95.01i	492.1+38.11i	494.4+2.82i	507.7+452.8i

4 结束语

通过对 P60 钢轨进行磁性能检测得到 P60 钢轨基本磁化曲线、磁滞回线、矫顽力等磁性能参数,并以此 参数利用有限元仿真软件计算出 P60 钢轨的电阻和内电感频变参数。以有限元仿真软件在极限频率 10⁷ Hz 下的 P60 钢轨外感计算结果计算其等效半径。在此基础上结合平行多导体传输线理论计算了牵引网的频变 导纳矩阵 **Y**(ω)、频变阻抗矩阵 **Z**(ω),得到良好的结果,计算方法可行。为行波故障测距的波速准确估计提 供了线路参数的计算方案和参考数据。

参考文献:

- [1] 覃剑,陈祥训,郑健超. 行波在输电线上传播的色散研究[J]. 中国电机工程学报,1999(9):28-31.
- [2] MARISCOTTI A, POZZOBON P. Synthesis of line impedance expressions for railway traction systems[J]. IEEE Trans Veh Technol, 2003, 52(2):420-430.
- [3] KNESEHKE T A, NATARAJAN R, NAGVI W. Impedance calculations for SEPTA's rail power distribution system[J]. IEEE Transactions on Vehicular Technology, 2003, 52(2):420–430.

- [4] 吴命利. 牵引供电系统电气参数与数学模型研究[D]. 北京:北京交通大学,2006.
- [5] 盛庆广. 基于多导体传输线模型的接触网电气参数计算方法[J]. 铁道技术监督, 2010, 38(7): 39-41.
- [6] 彭涛,陈剑云. AT 牵引供电对电力电缆感应电压仿真分析[J]. 华东交通大学学报,2017,34(5):113-119.
- [7] HILL R J, CARPENTER D C. Determination of rail internal impedance for electric railway traction system simulation[J]. Railway Electrification, 1991, 138(6): 311-321.
- [8] HILL R J, BRILLANTE S, DE SOUZA C R, et al. Electrical material data for railway track transmission line parameter studies[J]. Iee Procooding-Electric Power Applications, 1999, 146(1): 60–68.
- [9] HILL R J, BRILLANTE S, LEONARD P J. Railway track transmission line parameters from finite element field modeling: series impedance[J]. Iee Procooding-Electric Power Applications. 1999, 146(6):647-660.
- [10] WANG Y J,TSAI Y L. Calculation of the frequency-dependent impedance of rail tracks using a four-parameter equivalent tubular conductor model[J]. IEEE Transactions on Power Delivery, 2004, 19(3):1142–1147.
- [11] 李群湛, 贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社, 2007: 343.
- [12] WILLIAM H HAYT, JOHN A BUCK. 工程电磁场[M]. 西安:西安交通大学出版社, 2013: 429.

Calculation of Impedance Parameter Matrix of Traction Network Impedance Considering Steel Rail Ferromagnetic Properties

Liu Siran, Chen Jianyun, Yue Guo

(School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China)

Abstract: Due to the chromatic dispersion of the traveling wave in the transmission line, it is difficult to calculate the wave velocity accurately by use of the traveling wave fault location device. And the accuracy of the location would be affected too. The chromatic dispersion of the traveling wave is mainly caused by the frequency dependent character of the line impedance. Different from other guide lines, the steel rail in the traction network has its specificity. In this paper, the magnetic characteristic of the steel rail was tested by using the ballistic method from magnetic property detection of soft magnetic materials. The accurate magnetic characteristic data were obtained, including P60 steel rail fundamental magnetization curve, hysteresis loop and coercivity, etc. With the help of these data, the finite element simulation software was adopted to calculate the accurate frequency– dependent parameters of the impedance. On this basis, the traction network impedance and the frequency– dependent parameter matrix of the admittance were calculated by the parallel multi–conductor transmission line theory, while the special ferromagnetic characteristic of the steel rail was well–considered. It provides calculation scheme and the data foundation of the line impedance for the study of the traveling wave fault location of traction network.

Key words: steel rail; frequency-dependent parameter; B-H curve; traveling wave fault location; FEM