文章编号:1005-0523(2023)04-0056-10

不确定条件下公铁水多式联运多目标路径优化研究

杨洛郡,张 诚,郭军华

(华东交通大学交通运输工程学院,江西 南昌 330013)

摘要:多式联运运输的时效性和成本在现代物流的发展中是不可忽视的因素。针对公铁水多式联运的运输目标,主要研究了当运输时间、中转时间双重不确定因素服从随机分布时的绿色多式联运路径优化问题。构建以运输时间、碳排放、运输成本为目标函数,碳排放量为约束,建立运输时间、中转时间双重不确定条件下绿色多式联运路径多目标优化模型。并据此采用模糊自适应遗传算法(FAGA)和快速非支配排序遗传算法(NSGA-II)设计多式联运路径优化策略;最后采用从南昌到柏林的路径数据仿真验证所提方法的有效性并对结果进行对比分析。研究发现基于 NSGA-II 算法的多目标优化结果较优,可以引导多式联运经营人调整运输方案,减少二氧化碳的排放量,为物流企业开展多式联运运输提供可供参考的依据。

关键词:多式联运;路径优化;双重不确定;网络配置;碳排放

中图分类号:[U15] 文献标志码:A

本文引用格式:杨洛郡,张诚,郭军华.不确定条件下公铁水多式联运多目标路径优化研究[J].华东交通大学学报,2023,40(4): 56-65.

DOI:10.16749/j.cnki.jecjtu.2023.04.001

Research on Multi–Objective Path Optimization of Highway–Railway– Waterway Multimodal Transport Under Uncertain Conditions

Yang Luojun, Zhang Cheng, Guo Junhua

(School of Transportation Engineering, East China Jiaotong University, Nanchang 330013, China)

Abstract: In the development of modern logistics, the timeliness and cost of multimodal transport are factors that cannot be ignored. Aiming at the transportation goal of highway-railway-waterway multimodal transport, this paper mainly studies the path optimization problem of green multimodal transport when the dual uncertainties of transportation time and transit time follow random distribution. The multi-objective optimization model of green multimodal transport path under the dual uncertainties of transportation time and transit time is established with transportation time, carbon emissions and transportation cost as objective functions and carbon emissions as constraints. Accordingly, fuzzy adaptive genetic algorithm and fast non-dominated sorting genetic algorithm (NSGA-II) are used to design the multimodal transport path optimization results based on NSGA-II algorithm are better, which can guide the multimodal operators to adjust the transportation plans and reduce the emission of carbon dioxide, providing reference for logistics enterprises to carry out multimodal transportation.

收稿日期:2023-02-27

基金项目:国家自然科学重点联合基金(U2034211);国家重点研发计划(2020YFB1713700);流程工业综合自动化国家重点实验室联合基金(2022-KF-21-03)

Key words: multimodal transport; path optimization; dual uncertainties; network configuration; carbon emissions **Citation format**: YANG L J, ZHANG C, GUO J H. Research on multi-objective path optimization of highway-r ailway-waterway multimodal transport under uncertain conditions[J]. Journal of East China Jiaotong University, 2023,40(4):56–65.

多式联运作为一个更加绿色高效的运输组织 方式,相较于单一的运输方式,不仅可以适应长距 离、大运量,还能减排降碳、降低运输成本^[1],符合可 持续发展的理念^[2]。在物流产业转型升级的关键时 期,提升运输全过程服务质量和降低碳排量是重中 之重^[3-4]。

目前,国内外许多学者对多式联运进行了相 关研究,并取得了一定的成果。Wang 等59设计了一 种基于多式联运网络变形求解的方法,其中以运 输转运成本、运输转运延误成本和运输成本之和 作为总成本,模型的优化目标是求得总成本的最 小值并通过实验验证得出算法的有效性;Boussedjra 等⁶⁰对多式联运网络运用双向研究策略来搭建 模型,以运输高效和快速为优化目标,并通过遗传 算法来寻求最优解。但是以上模型都没有考虑碳 排放对路径优化的影响,环境污染和资源短缺带 来的问题越来越严重,温室气体排放导致的全球 变暖已经成为整个社会面临的严重问题。Chen 等 四研究了物流运作模式对碳减排的影响,较早的通 过相关数学模型分析了低碳问题和物流问题;李 顺勇等個在多路径时变网络下建立了低碳车辆的 路径优化模型,针对交通状况为拥挤流状态设计 了符合时变网络碳排量计算的方法;任腾等19在车 辆承重、客户时间窗和冷链产品保鲜约束下,同时 在考虑客户满意度的前提下构建了以优化目标为 最小排放量的车辆路径优化模型。以上研究虽然 在物流运作等运输问题中考虑到了碳排放的影 响,但将联运货物中转时间成本引入多式联运路 径优化当中的研究尚处空白。陈维亚等^[10]建立了 多式联运路径优化模型并以最小的总成本作为优 化目标,其中总共的成本费用包括运输成本、转运 成本、碳税成本和质量损失补偿成本,通过设计遗 传算法来寻求最优解;Jiang 等凹研究了具有二氧 化碳减排目标及污染排放的多式联运网络问题。 上述研究往往以温室气体 CO2 排放量作为碳排放 量的目标函数, 而碳排放往往还包含其他温室气 体。不同的运输方式会有很大程度上不同的能源

使用量,同时会产生不同的碳排放量,运输的实际 距离长短和车辆的载重量也会影响碳排放量。

多式联运网络会受到种种不确定因素的影响, 主要是因为其运输的复杂性、多环节和广泛的覆盖 面。针对多式联运在不确定的条件下对路径进行优 化的问题,Fazayeli等^[12]建立了模糊数学模型分析考 虑模糊需求情况下的路径优化问题,并通过遗传算 法来寻求最优解。Yin 等^[13]优化了闭环多式联运网 络的设计方案来解决新产品和退货产品的需求以 及碳税的不确定条件问题。Fotuhi 等¹⁴⁴研究了网络 拓扑结构不确定的多式联运路径优化问题。吴小芳[15] 将救援物资需求量、道路交通条件等设为混合不确 定性因素,研究了物流的选址与路径规划在混合不 确定条件下的问题,通过建立模型寻求最优解,较 好地完成了物流选址与物资分配的问题。袁长伟 等临将鲁棒优化模型运用于考虑多式联运货物的运 输成本和网络终端节点容量不确定性的问题。在多 式联运路径优化问题上主要是以运输总成本为目 标来寻求最优解,大多数考虑的是运输需求、运输 时效等不确定因素,然而运输时间、转运时间等双 重不确定影响往往被忽略掉。

本文从多式联运实际运营角度出发,当运输 时间、中转时间双重混合不确定因素服从随机分 布时,以运输成本、时间和碳排放的最优函数值作 为目标,碳排放为约束,构建运输时间、中转时间 双重不确定条件下绿色多式联运路径优化模型, 采用模糊自适应遗传算法(FAGA)和快速非支配 排序遗传算法(NSGA-II)比较多式联运路线场景 的最优决策和算法的有效性,得到理想的运输方 式和路线方案。

1 问题描述与建模

1.1 问题描述

随着碳达峰、碳中和目标的提出,交通运输业 也必须响应国家号召朝着绿色、低碳的方向发展。 本文选择运输成本、运输时间和碳排放量作为优化 目标,以达到最优的运输策略。

1.2 不确定条件下的多目标优化模型

为了便于本文建立多目标优化模型并进行求 解,现做出如下假设:

 1) 假设运输线路和转运节点的运输能力不受 限制;

2) 假设在运输过程中,货物量保持固定不变;

3) 假设只能选择一种方式在相邻两个节点之间运输;

 4) 假设货物在转运节点的中转机会有且仅有 一次;

5) 假设运输过程中不会遇见道路拥堵、自然灾 害等情况。

1.2.1 符号说明

N表示运输节点的集合:H表示除起点和终点 外的运输节点的集合:M表示随机运输时间的情景 集合,m为该集合的子集,m∈M;J表示所有运输方 式集合;q表示货运量;Tmin表示完成货物运输的时 间下限;T_{max}表示完成货物运输的时间上限;S_i表示 货物到达 i 节点的时间;dii 表示从节点 i 到节点 i 时,如果选择第 k 种运输方式交通工具所需运行的 距离: c_i^k 表示从节点 i 到节点 i 时,如果选择第 k 种 运输方式所需要承担的单位运输成本;cill表示假如 在节点 i 选择将运输方式由 k 换为 l 所需承担的运 输成本:e_k表示选择第 k 种运输方式时的单位碳排放 量; E_{max} 表示运输过程中允许的碳排放量上限; T_{i}^{k} , t_i^k 分别表示节点 i 与节点 j 间采用第 k 种运输方式 运输时间的随机变量与取值; $T_{ii}^{um}, t_{ii}^{um}; T_{ii}^{vm}, t_{ii}^{um}; T_{ii}^{vm}, t_{ii}^{vm}; T_{ii}^{vm}; T_{ii}^{vm}, t_{ii}^{vm}; T_{ii}^{vm}, t_{ii}^{vm}; T_$ tim 分别表示情境 m 中公路、铁路、水路运输时间的 随机变量与取值;T_{ii}^m,t_{ii}^m;S_i^m,s_i^m分别表示不同情境 中运输时间、转运时间的随机变量与取值;Di^m,di^m; A;",a;"分别表示节点 i 出发时间和到达时间的随机 变量和取值;x_i^k表示节点 i 与节点 j 间采用第 k 种 运输方式时取1,否则取0;γi⁴表示节点i由运输方 式 k 转换为运输方式 l 时取 1,否则取 0。

1.2.2 目标函数

1) 运输成本

$$\min C = C_1 + C_2 \tag{1}$$

运输途中运输成本与货运量、运输距离、单位 运输成本和运输方式有关。

$$C_{1} = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \sum_{k \in J} q d_{ij}^{k} c_{ij}^{k} x_{ij}^{k}$$
(2)

节点转换成本与货运量、不同运输方式之间的

单位转换成本和运输方式有关。

$$C_{2} = \sum_{i \in H} \sum_{k \in J} \sum_{l \in J} qc_{i}^{kl} y_{i}^{kl}$$

$$(3)$$

 2)运输时间。运输时间分为在途运输时间和节 点转换时间。

$$\min T = T_1 + T_2 \tag{4}$$

$$T_{1} = \sum_{i \in N} \sum_{j \in N} \sum_{k \in J} (t_{ij}^{um} x_{ij}^{k} + t_{ij}^{vm} x_{ij}^{k} + t_{ij}^{um} x_{ij}^{k})$$
(5)

$$T_{2} = \sum_{i=2}^{n-1} \sum_{k=1}^{3} \sum_{l=1}^{3} q s_{i}^{m} y_{i}^{kl}$$
(6)

式(5)为在途运输时间,由运输时间和运输方式组成,其中考虑运输时间的随机变量与取值;式(6)为 节点转换时间,由运量、转运时间和转运方式组成, 其中考虑转运时间的随机变量与取值。

3) 碳排放

$$E = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \sum_{k \in J} q d_{ij}^{k} e_k x_{ij}^{k}$$
(7)

1.2.3 约束条件

$$\sum_{i,i+1}^{k} = 1 \quad \forall i \in N$$
(8)

$$\sum y_i^{kl} = 1 \equiv 0 \quad \forall i \in N \tag{9}$$

$$\begin{aligned} x_{i-1}^{k} + x_{i,i+1}^{l} \ge 2y_{i}^{kl} \quad \forall i \in N, k \in J, l \in J \\ E \ge E_{\max} \end{aligned}$$
(10)

$$S_{j} = S_{i} + \sum_{k \in J} \sum_{l \in J} x_{ij}^{k} y_{i}^{kl} (t_{i}^{kl} + t_{ij}^{k}) \quad \forall_{i,j} \in N$$
(12)

$$D_{i}^{m} + T_{ij}^{zm} - A_{j}^{m}|_{D_{i}^{n} = d_{i}^{m}, T_{i}^{m} = t_{ij}^{m}, A_{j}^{n} = a_{j}^{n}} \leq l(1 - y_{ij}^{z}),$$

$$\forall (i, j) \in I, z \in J, m \in M$$
(13)

$$(A_{j}^{m}+S_{j}^{m}-g_{j}^{m}-D_{j}^{m})y_{jk}^{z}|_{A_{j}^{m}=a_{i}^{m},S_{j}^{m}=s_{j}^{m},D_{i}^{n}=d_{j}^{m}} \leq l(1-y_{jk}^{z}),$$

$$\forall (j,k) \in I, z \in J, m \in M$$
(14)

$$T_{\min} \leq \sum_{i \in N} \sum_{j \in N} \sum_{k \in J} t_{ij}^{k} x_{ij}^{k} + \sum_{i \in N} \sum_{k \in J} \sum_{l \in J} y_{i}^{kl} t_{i}^{kl} \leq T_{\max}$$

$$\forall_{i,j} \in N$$
(15)

$$x_{ij}^{\ j} \in \{0, 1\} \tag{16}$$

$$\mathbf{v}_i^{kl} \in \{\mathbf{0}, \mathbf{1}\} \tag{17}$$

式(8)表示相邻两节点间进行运输工作时只能选择 一种方式;式(9)表示运输过程中途经每座城市时 都只有一次换装的机会;式(10)表示变量与变量之 间的逻辑关系;式(11)表示货物运输的碳排放量必 须在被允许的限度之内;式(12)采用递推的方法表 达出货物运输到各个地点(节点*i*)的时间;式(13)、 式(14)为运输和转运时间的连续性约束,式(13)是 为了确保货物到达每个节点的时间等于货物从上 一节点的出发时间与运输时间之和,其中在转换运 输方式的时候考虑不同情境中运输时间、转运时间 不确定的变量与取值,式(14)是为了确保计算货物 在每个节点的出发时间时,可以通过到达时间、中 转时间和等待时间相加得到;式(15)表示货物从起 点至终点,总的运输时间和换装时间的和要在规定 的货物到达终点的时间窗内;式(16)和式(17)是决 策变量的取值。

2 算法设计

2.1 模糊自适应遗传算法设计

2.1.1 FAGA 算法原理

本文提出了一种 FAGA 算法,利用种群和个体 适应度值的方差来衡量总体种群多样性和个体差 异,其中基于 Mamdani 模糊推理系统改变 P_e 和 P_m, 以提高算法的种群多样性。FAGA 算法基本原理如 图 1 所示。

模糊控制器从遗传算法中得到性能测量值及 P_e、P_m的参数,通过模糊规则处理,将调整后的参数 输出给优化算法,达到自适应在线调整算法的目 的。首先根据函数分布确定随机变量运输时间和转 运时间的取值,采用种群中的所有个体之间距离的 方差来衡量种群的密集程度,并进行归一化作为模 糊系统的输入,通过模糊语言转换成相对应的 P_e 和 P_m的模糊变量值,再反模糊化对算法中的 P_e 和 P_m 进行修正。

2.1.2 算法步骤

首先对前种群个体的3个目标求平均,求出其 居中个体路径的成本、时间和碳排放3个目标值 $\bar{x}_i, \bar{y}_i, \bar{z}_i$ 如下

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}, \bar{z} = \frac{\sum_{i=1}^{n} z_i}{n}$$
(18)

式中:x_i,y_i,z_i分别为每个个体的成本、时间、碳排放 目标值:n为种群数量。

随后求每个个体与中间个体的距离差,如下

$$d_{i} = \sqrt{(x_{i} - \bar{x})^{2} + (y_{i} - \bar{y})^{2} + (z_{i} - \bar{z})^{2}}$$
(19)
$$\vec{x} + d_{i} \rightarrow \phi \wedge \phi + \phi = \phi = \phi$$

求解的所有个体与中间个体碳排放差的均方差 V,如下

$$V = \sqrt{\frac{\sum_{i=1}^{n} d_i^2}{n}}$$
(20)

最后对输入量进行归一化处理,如下

$$F = \frac{V - V_{\min}}{V_{\max} - V_{\min}}$$
(21)

式中:V_{max}为群体中最大个体的距离的均方差值; V_{min}为群体中最小个体的距离的均方差值。

为简单起见,模糊系统中隶属度函数取梯形隶 属函数。均方差 F、交叉概率 P。和变异概率 Pm的隶 属度函数如图 2 所示。

模糊规则如下。规则 i:如果 $F \neq Q_{i1}, 则 P_{e} \neq W_{i1}, P_{m} \neq W_{i2};$ 其中 $i=1,2,\dots,n$ 表示第 $i \land 模糊规$ 则, Q_{i1} 描述 F 状态的模糊语言变量, W_{i1} 描述 P_{e} 和 P_{m} 大小的模糊语言变量。本文对各模糊语言变量均 划分为大、中、小 3 个级别。综合上述可以得到如下 模糊规则:

1) 如果 F 是小,则 P_c 是小,P_m 是大;
 2) 如果 F 是中,则 P_c 是中,P_m 是中;
 3) 如果 F 是大,则 P_c 是大,P_m 是小。

FAGA 算法具体流程如下:

Step 1 将最优路径分为不同个体,随机产生规模为 N 的初始种群,设置进化代数;

Step 2 计算第 *n* 个个体运输的成本、时间和 碳排放的适应度值,计算群体的初始均方差 *F*;

Step 3 将 F 模糊化,求出 P_{e} 和 P_{m} 在模糊语言 中所对应的变量值;

Step 4 在对 P_{e} 和 P_{m} 进行反模糊化后运行,更新 P_{e} 和 P_{m} 的值,更新种群个体并判断此时优化算法是 否满足 3 个多目标路径优化模型,否则回到 Step 2。

2.2 快速非支配排序遗传算法设计

现实生活中,存在多目标优化问题,当优化目标个数增加到3个及以上时,目标函数之间经常是冲突的,其最优解并非单一解,而是一组非支配解¹⁷⁷。 2.2.1 NSGA-II算法原理

NSGA-II 算法是 Deb 等学者于 2000 年在 NS-GA 算法的基础之上提出来的^[18],广泛应用于交通流预测、最短路径策略优化等领域^[19]。

图 3 为 NSGA-II 算法流程图。首先通过 Pareto 优胜级别排序对初始种群中的个体包括路径和运 输方式进行等级划分,级别越低则表示满足成本、 时间、碳排放多目标路径优化模型的适应度越高。 通过对成本、时间、碳排放 3 目标函数进行拥挤距 离排序,优先选择拥挤距离大的个体进入下一代, 这有利于保持种群的多样性。经过上述操作产生的 种群称为子代种群 Q,将其与父代种群 P,相融合构 成 R,继续进行拥挤距离排序和优胜关系排序,循 环操作,直到满足停止条件。

2.2.2 优化步骤

本文选择 NSGA- II 即带精英策略的非支配排 序遗传算法对多式联运最优路径进行选择。

Step 1 对模型的运输方式决策变量 x_{ij}^{k} 和 y_{ij}^{k} 进行二进制编码,区间为[0,1]。将最优路径分为不 同的个体,随机产生规模为 N 的初始种群,设置进 化代数;

Step 2 随机给出初始化种群 P_0 ,并对种群 P_0 进行非支配排序,初始化每个个体的 Rank 值;

Step 3 通过二进制锦标赛法从 P_i 和 Q_i 产生 出组合种群 $R_i = P_i \cup Q_i$;

Fig.3 Flow chart of NSGA- II

Step 4 对 R_i 进行非支配排序,并通过挤排和 精英保留策略选出满足时间、成本、碳排放量 3 目 标的 N 个个体,组成新一代种群 P_{t+1} ;

Step 5 跳转 Step 4,并循环,直至满足结束条件。2.2.3 随机时间条件设计

随机时间条件采用矩形概率分布如图 4 所示。 从图中看出,这里随机概率分布采用的是矩形均匀 分布,在同样间隔的分布概率是相同可能性。通过 参数 *a* 和 *b* 来定义均匀分布,在坐标上分别是最小值 和最大值,一般简写为 U(*a*,*b*),其概率密度函数为

$$\begin{cases} f(x) = \frac{1}{b-a}, a < x < b \\ f(x) = 0, \text{else} \end{cases}$$
(22)

设定随机条件在 i 节点与 j 之间水路运输最大

Fig.4 Uniform distribution function diagram

时间为 T_{max} =110,最小时间为 T_{min} =90,则满足 i 节点 与 j 之间的水路随机均匀分布函数为 T_{ij}^{qm} ~U (90,110),概率密度函数为 1/30。在i 节点与j 之间 公路运输最大时间为 T_{max} =15,最小时间为 T_{min} =12, 则满足 i 节点与j 之间的公路随机均匀分布函数 为 T_{ij}^{um} ~U(12,15),概率密度函数为 1/3。同理铁路 运输的时间随机均匀分布函数为 T_{ij}^{vm} ~U(T_{min}, T_{max})。

3 算例

本文采用包括公路、铁路和水路3种运输方式的 运输网络来验证 FAGA 与 NSGA-II 算法的优化效 果。假设现有一批货物需要从南昌运往德国,本文选 取南昌为国际集装箱多式联运的始发城市,德国柏林 为终点城市,须途经郑州、怀化、南宁、台北、上海、满洲 里、雅库茨克、瓜达尔、新加坡、鹿特丹、华沙、伏尔加格 勒 12 个城市作为中间节点城市,每个节点之间需要 承担相应的装卸任务。网络中两个节点之间的运输方 式可以分为单一运输和多式联运,如图 5 所示。

设定有 10 个 20 英尺的集装箱(配货毛重 20 t) 将从南昌运往柏林,假设相邻的两个城市节点之间 的运输方式可从公路运输、铁路运输、水路运输中 任选 1~3 种。本文的参数设定情况如下:种群规模 为 100,货运量为 20 t,最大迭代次数为 400 次,从 降低企业成本、节约能耗、提升运输效率等多个方 面进行综合考量,最后得到考虑了多方面因素的多 式联运路径优化方案。多式联运的中转时间和费用 及能耗相关参数如表 1 所示,各运输方式的部分路 段运输里程如表 2 所示。

本文采用 Matlab 对案例模型进行求解,采用 FAGA 模糊自适应遗传算法与 NSGA-II 算法的路径 优化效果进行对比分析。本案例中 FAGA 算法设定 初始交叉概率 0.2,变异概率 0.8。将 3 个目标函数成

表 1 中转时间、费用及能耗 Tab.1 Transit time, cost and energy consumption

Transit mode	Transit time/ (h/t)	Transit cost/ (yuan/t)	Transit energy consumption (kg/t)
Railway-highway	0.25	97.5	
Railway-waterway	0.5	137.5	2.012 5
Highway-waterway	0.35	115	

Fig.5 Multimodal transport network from Nanchang to Berlin

Tab.2 Transport mileage of some sections of each mode					
	km				
Originating	Arrival	1	ge		
node	node	Railway	Highway	Waterway	
	Wuhan	358	334	479	
	Huaihua	142	385	_	
	Chongqing	954	901	_	
Nanchang	Guangzhou	706	670	_	
	Shanghai	1 199	1 054	_	
	Nanjing	887	587	_	
	Changsha	582	626	_	
	Zhengzhou	536	514	_	
XX7 1	Xi'an	1 047	740	-	
Wuhan	Chongqing	871	866	1 286	
	Shanghai	1 230	820	1 043	
	Chongqing	1 094	1 041	_	
C1 1	Huaihua	356	385	-	
Changsha	Hangzhou	927	916	-	
	Nanning	922	818	-	
	Jinan	640	639	_	
Nanjing	Zhengzhou	356	698	-	
	Wuhan	465	537	-	
	Qingdao	393	366	_	
т.	Harbin	1 486	1 583	-	
Jinan	Zhengzhou	380	413	-	
	Wuhan	976	842	-	
0: 1	Shenyang	1 474	1 187	_	
Qingdao	Harbin	1 985	1 732	_	
Chongqing	Changsha	1 094	1 041	_	
	Huaihua	602	602	_	
	Chengdu	302	300	742	
	Xi'an	728	710	_	
	Guiyang	339	406	_	
S1	Yanji	709	666	_	
Snenyang	Changchun	305	289	_	

表 2 各运输方式的部分路段运输里程

本 f_1 、碳排放 f_2 、时间 f_3 转化成一个单目标函数f来进 行优化的,也就是说通过权值相乘得到 $f=\omega_1f_1+\omega_2f_2+$ ω_3f_3 ,选择 $\omega_1=0.5$ 、 $\omega_2=0.3$ 、 $\omega_3=0.2$ 。给定最大遗传代数 gen=400,FAGA 算法采用模糊参考系统作为调节 两种算子的机构自适应选取交叉概率与变异概 率,利用设定的各个参数量,最终得到将货物从 南昌运抵柏林的最佳路径。

图 6 为 FAGA 算法优化路径, 南昌为始发城 市,德国柏林为终点城市,依次途经南京、郑州、西 安、怀化、贵阳、南宁、海南、台北、北海、昆明、广 州、上海、满洲里、雅库茨克、二连浩特、阿拉山口、 喀什、瓜达尔、仰光、曼谷、胡志明、新加坡、鹿特 丹、汉堡、华沙、伏尔加格勒、明斯克、基普、文尼 察、卡托维兹共30个城市。根据表3,得出从南昌 至柏林多式联运运输方案。在转换运输方式为公 路运输从怀化至贵阳,从北海至昆明,从阿拉山口 至喀什,从仰光至曼谷,从曼谷至胡志明,最后公 路运输由伏尔加格勒至明斯克。在转换运输方式 为水路运输从胡志明至新加坡,从新加坡至鹿特 丹,从华沙至伏尔加格勒,从明斯克至基普,从文 尼察至卡托维兹,最后从卡托维兹至柏林。其他运 输方式为铁路运输。图7为 FAGA 算法的适应度 曲线图,由图可得 FAGA 算法适应度函数在迭代 200 次基本收敛至 11 020, 可见 FAGA 算法收敛速 度较快。

Fig.6 FAGA algorithm to optimize Nanchang- Berlin multimodal transport network

表 3 FAGA 算法优化多式联运最优路径 Tab.3 FAGA algorithm for optimizing the optimal path of multimodal transportation

City1	Transit mode	City2
Nanchang	Railway	Nanjing
Nanjing	Railway	Zhengzhou
Zhengzhou	Railway	Xi'an
Xi'an	Railway	Huaihua
Huaihua	Highway	Guiyang
Guiyang	Railway	Nanning
Nanning	Railway	Hainan
Hainan	Railway	Taipei
Taipei	Railway	Beihai
Beihai	Highway	Kunming
Kunming	Railway	Guangzhou
Guangzhou	Railway	Shanghai
Shanghai	Railway	Manzhouli
Manzhouli	Railway	Yakutsk
Yakutsk	Railway	Erenhot
Erenhot	Railway	Alashankou
Alashankou	Highway	Kashgar
Kashgar	Railway	Gwadar
Gwadar	Railway	Yangon
Yangon	Highway	Bangkok
Bangkok	Highway	Ho Chi Minh
Ho Chi Minh	Waterway	Singapore
Singapore	Waterway	Rotterdam
Rotterdam	Railway	Hamburg
Hamburg	Railway	Warsaw
Warsaw	Waterway	Volgograd
Volgograd	Highway	Minsk
Minsk	Waterway	Kip
Kip	Railway	Vinnitsa
Vinnitsa	Waterway	Katowice
Katowice	Waterway	Berlin

	表 4	NSGA	Ⅲ算法优(七多式联	运最优路	径
Tab.4	NS	GA−Ⅱ	algorithm f	or optim	izing the	optimal
	1	path of	multimodal	transpo	rtation	

Citv1	Transit mode	City2
Nanchang	Bailway	Wuhan
Wuhan	Railway	Zhengzhou
Zhengzhou	Railway	Chongging
Chongging	Bailway	Huaihua
Huaihua	Bailway	Nanning
Nanning	Highway	Hainan
Hainan	Bailway	Tainei
Tainei	Bailway	Beihai
Beihai	Highway	Kunming
Kunming	Bailway	Cuangzhou
Guangzhou	Highway	Shanghai
Shanghai	Bailway	Manzhouli
Manzhouli	Railway	Vakutek
Vakutek	Railway	Frenhot
Frenhot	Railway	Alashankou
Alashankou	Highway	Kashgar
Kachgar	Railway	Cwadar
Cwadan	Pailway	Vangan
Gwadar	Itanway	Tangon Davalasla
I angon	Пignway Dil	Dangkok
Dangkok	naliway	Singapore
Singapore	w aterway	Kotterdam
Kotterdam	Kallway	Hamburg
Hamburg	Kallway	Warsaw
Warsaw	Waterway	Volgograd
Volgograd	Highway	Minsk
Minsk	Waterway	Kip
Kip	Railway	Vinnitsa
Vinnitsa	Waterway	Katowice
Katowice	Waterway	Berlin

图 8 为 NSGA-II 算法优化路径,南昌为始发 城市,德国柏林为终点城市,依次途经武汉、郑州、 重庆、怀化、南宁、海南、台北、北海、昆明、广州、上 海、满洲里、雅库茨克、二连浩特、阿拉山口、喀什、 瓜达尔、仰光、曼谷、新加坡、鹿特丹、汉堡、华沙、伏 尔加格勒、明斯克、基普、文尼察、卡托维兹共 28 个 城市。根据表 4,得出从南昌至柏林多式联运运输采 用 NSGA-II 算法的方案中,转换运输方式为公路 运输从南宁至海南,从北海至昆明,广州至上海,从 阿拉山口至喀什,从仰光至曼谷,最后公路运输由 伏尔加格勒至明斯克。在转换运输方式为水路运输 从新加坡至鹿特丹,从华沙至伏尔加格勒,从明斯 克至基普,从文尼察至卡托维兹,最后从卡托维兹 至柏林。其他运输方式为铁路运输。

对上述结果进行分析可以得出如下结论:通过 对运输成本的评估,多式联运的经营者更倾向于选 用成本较低的铁路运输,在降低碳排放量的同时, 也会增加一些运输时间。由于从南昌到柏林的水运 并不便利,耗时长、成本高、连续性差,因此水运在 本案例中竞争优势较低,故除了一些节点只存在水 路运输之外,一般不会选择水路运输方式。

NSGA-Ⅱ算法的 Pareto 最优解集仿真结果如

Fig.8 NSGA- II algorithm optimization of multimodal transportation network from Nanchang to Berlin

图 9 所示,可以看出算法的解集分布靠近坐标轴, 需要优化的目标函数值小,解的质量更高。图 10 为 NSGA-II 算法在迭代过程中 Pareto 最优解集数和 迭代次数的关系图,可以看出 NSGA-II 算法的解个 数在次数较少且较快时间内达到种群数量,故具有 较好的收敛速度。

由表 5 可见, NSGA-II 算法的最优解在运输成本、距离和时间 3 个维度上的目标值都优于 FAGA。 FAGA3 个目标函数转化成一个单目标函数来进行优化的, 这样对 w₁, w₂, w₃大小的选择必然会存在主观性,

表 5 NSGA-Ⅱ算法优化三目标结果

Tab.5	Three–objective optimizing results of NSGA– II
	algorithm

		0			
Target	Transit cost/ (10 ⁴ yuan)	Carbon emis- sions/kg	Transit time/h	Transit distance/ km	Unit carbon emissions/ (kg/(t•km))
NSGA- II	273.324	11 998.01	1 532.9	53 515.7	0.010 7
FAGA	264.451	11 716.28	1 415.9	55 758.1	0.010 5

故最终得到的适应度曲线值较高,收敛效果一般,优 化质量较多目标优化算法有所下降。本次运输任务采 用 NSGA-II 算法的公铁联运策略,能够有效降低运输 成本,减少碳排放量,还能提前部分时间运抵目的地。

4 结论

 1)首先针对集装箱多式联运结果复杂效率低、环境污染严重等问题,建立起充分考虑了成本、时间、碳 排放量的多式联运综合优化模型并进行求解。

2)其次运用 FAGA 和 NSGA-Ⅱ算法,并且以 实际运输网络南昌至柏林的运输路线为例,提出了 在约束条件下的由多种运输方式组合而成的最优 运输路线。

3) 通过 Matlab 软件对前文建立的模型进行优 化求解,最终得出综合考虑了运输时间、运输成本、 运输距离这 3 个影响因素的全局最优解,研究证明 基于多目标并行优化的 NSGA-II 算法优化效果较 FAGA 算法更优。

参考文献:

- 陈知渊,郭唐仪,周洋. 突发事件下双重不确定条件的多 式联运路径优化[J]. 物流科技,2022,45(19):79-83.
 CHEN Z Y,GUO T Y,ZHOU Y. Research on route optimization of multimodal transport under double uncertain conditions of emergencies[J]. Logistics Sci-Tech,2022,45 (19):79-83.
- [2] ZENG H, JIANG C J, LYN Y C, et al. Long short-term fusion spatial -temporal graph convolutional networks for traffic flow forecasting[J]. Electronics, 2023, 12(1):238.
- [3] LV Z H, SHANG W L. Impacts of intelligent transportation systems on energy conservation and emission reduction of transport systems: A comprehensive review, Green Technologies and Sustainability[J]. Green Technologies and Sustainability, 2023, 1 (1): 100002.
- [4]郑长江,陈宜恒,沈金星. 基于地铁的地上地下闭环物流 配送路径优化[J]. 华东交通大学学报,2022,39(1):89-98. ZHENG C J,CHEN Y H,SHEN J X. Distribution routing optimization of ground-underground closed-loop logistics based on metro network[J]. Journal of East China Jiaotong University,2022,39(1):89-98.
- [5] WANG Q B, HAN Z X. The optimal routes and modes selection in container multimodal transportation networks[C]// Haikou:2010 International Conference on Optoelectronics and Image Processing, 2010.
- [6] BOUSSEDJRA M, BLOCH C, EI M A. An exact method to find the intermodal shortest path (ISP) [C]//Taibei: 2004 IEEE International Conference on Networking, Sensing and Control, 2004.
- [7] CHEN X, BENJAAFAR S, ELOMRI A. The carbon –constrained EOQ[J]. Operations Research Letters, 2013, 41(2): 172–179.
- [8] 李顺勇,但斌,葛显龙. 多通路时变网络下低碳车辆路径 优化模型与算法[J]. 计算机集成制造系统,2019,25(2); 454-468.
 LISY, DANB, GEXL. Optimization model and algorithm of low-carbon vehicle routing problem under multi-graph time-varying network[J]. Computer Integrated Manufacturing Systems,2019,25(2):454-468.
- [9] 任腾,陈玥,向迎春,等.考虑客户满意度的低碳冷链车辆路 径优化[J]. 计算机集成制造系统,2020,26(4):1108-1117. REN T,CHEN Y,XIANG Y C, et al. Optimization of lowcarbon cold chain vehicle path considering customer satis-

faction[J]. Computer Integrated Manufacturing Systems, 2020, 26(4):1108–1117.

[10] 陈维亚,龚浩,方晓平.考虑运输碳税与质量承诺的多式 联运路径优化[J].铁道科学与工程学报,2022,19(1): 34-41.

CHEN W Y, GONG H, FANG X P. Multimodal transportation route optimization considering transportation carbon tax and quality commitment[J]. Journal of Railway Science and Engineering, 2022, 19(1):34–41.

- [11] JIANG J H,ZHANG D Z,MENG Q,et al. Regional multimodal logistics network design considering demand uncertainty and CO₂ emission reduction target: A system-optimization approach[J]. Journal of Cleaner Production, 2020, 248:119304.
- [12] FAZAYELI S, EYDI A, KAMALABADI I N. Location routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm[J]. Computers & Industrial Engineering, 2018, 119(5):233-246.
- [13] YIN W W, WU S L, ZHAO X Z, et al. Shore power management for green shipping under international river transportation[J]. Maritime Policy & Management, 2022, 49(5):737–754.
- [14] FOTUHI F, HUYNH N. A reliable multi-period intermodal freight network expansion problem[J]. Computers & Industrial Engineering, 2018, 115(1):138-150.
- [15] 吴小芳. 航运物流绿色战略规划研究[D]. 厦门:厦门大学,2018.
 - WU X F. Research on green strategic planning of shipping logisties[D]. Xiamen ; Xiamen University, 2018.
- [16] 袁长伟,吴群琪,韦达利,等.考虑拒载的出租车市场平衡机制与优化模型[J].中国公路学报,2014,27(6):91-97. YUAN C W,WU Q Q,WEI D L,et al. Optimal modeling and equilibrium mechanism of taxi market with consideration of service refusal[J]. China Journal of Highway and Transport,2014,27(6):91-97.
- [17] HUI L,ZHANG Q. Multi-objective optimization problems with complicated pareto sets, MOEA/D and NSGA-II [J]. IEEE Transactions Evolutionary Computation, 2009, 13(2): 284-302.
- [18] 王丽萍,沈笑,吴洋,等. 基于动态分配邻域策略的分解 多目标进化算法[J]. 浙江工业大学学报,2021,49(3): 237-244.
 WANG L P,SHEN X,WU Y,et al. Decomposition multi-

objective evolutionary algorithm based on dynamic allocation neighborhood strategy[J]. Journal of Zhejiang University of Technology, 2021, 49(3):237–244.

- [19] 崔逊学. 多目标进化算法及其应用[M]. 北京:国防工业 出版社,2006.
 - CUI X X. Multt-objectire evolutionary algorithm and ist application[M]. Beijing: National Defense Industry Press, 2006.

通信作者:杨洛郡(1989—),女,博士研究生,研究方向为交 通运输系统优化;2011年本科毕业于澳大利亚斯威本科技大 学,2014年硕士毕业于澳大利亚伍伦贡大学。E-mail:yangluojun0725@163.com。 (责任编辑:吴海燕)