基于压缩库产生的磁子阻塞
DOI:
作者:
作者单位:

1.华东交通大学信息学院;2.浙江理工大学理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(62062035);江西省教育厅科技项目(GJJ200645)


Magnon blockade generated by coupling to a squeezed reservoir
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于近年来微波腔与磁子相互作用的实验进展以及非线性库理论,文章提出将腔-磁系统与压缩库耦合,分析其中的磁子阻塞效应,以实现磁性量子级的操控。在一个受驱动的微波腔中放置一个钇铁石榴石小球,球体中的Kittel模与微波腔模耦合,同时腔场与压缩真空库耦合。通过数值求解系统的量子主方程,详细分析了关联函数受耦合强度、失谐量、耗散率等因素的影响。从理论上证明了与压缩库耦合的腔-磁系统可以产生单磁子阻塞和双磁子阻塞,并且可以通过调节驱动强度或者失谐量灵活地在单磁子阻塞、双磁子阻塞、双磁子隧穿之间进行切换。所提出的磁子阻塞方案主要由压缩库的非线性诱导得到,为腔-磁系统实现单磁子和双磁子阻塞提供了一种可能的新途径。

    Abstract:

    Inspired by the recent experiments of cavity-magnon system and the theories of nonlinear reservoir, a scheme of coupling a cavity-magnon system to a squeezed reservoir is proposed to analyze the magnon blockade effect, and thus to realize the manipulation of magnetism in quantum level. An yttrium iron garnet sphere is located in a driven microwave cavity. The Kittel mode in the yttrium iron garnet sphere interacts with the microwave cavity mode, and the cavity field is coupled to a squeezed vacuum reservoir. By numerically solving the quantum master equation of the system, the influence of various factors such as coupling strength, detuning and dissipation rate on the correlation function is analyzed in detail. It is proved theoretically that the cavity-magnon system coupled to a squeezed reservoir can induce single-magnon blockade and two-magnon blockade, and the switching among single-magnon blockade, two-magnon blockade and two-magnon tunneling can be flexibly controlled by tuning the driving intensity or the detuning. The magnon blockade effect in the proposed scheme is mainly induced by the nonlinearity of the squeezed reservoir, which provides a possible new method to realize single or double magnon blockade in cavity-magnon system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-24
  • 最后修改日期:2022-01-21
  • 录用日期:2022-02-09
  • 在线发布日期: 2023-06-21
  • 出版日期: