动车组网压互感器故障机理与优化设计
作者单位:

大连交通大学


Failure mechanisms and optimal design of EMU potential transformer
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    针对动车组网压互感器在运行过程中频繁发生故障的问题展开研究,得出了自然环境下绝缘老化以及过电压、过电流对绝缘的影响是造成网压互感器故障的主要原因,并通过基于有限元法的仿真证明了理论分析的正确性。最后通过添加静电屏、增加C段绕组首端绝缘距离的方案对绝缘进行优化设计,通过增大高压绕组线径、增大铁心截面积及绕组匝数对过负荷能力进行优化设计,通过增加侧表面换热系数对散热进行优化设计,实现了增大绝缘强度、提高过负荷能力、减小温升的功能,并进行了有限元仿真分析。仿真结果表明,优化后的网压互感器最大场强由2.79kV/mm减小至2.24kV/mm,增大了端部绝缘裕度;在90kV工频耐压下饱和度能控制在110%内,励磁电流能在极限容量允许范围内,有效提升了过负荷能力;热点温度由原来的115.7℃减小至108.8℃,散热能力有所提升;仿真结果证实了优化设计的合理性,为工程应用提供参考。

    Abstract:

    Research on the problem of frequent failures of the potential transformer in the operation of the rolling stock, and concludes that the aging of the insulation in the natural environment and the influence of overvoltage and overcurrent on the insulation are the main reasons for the failure of the potential transformer, and proves the correctness of the theoretical analysis by simulation based on the finite element method. Finally, the insulation is optimized by adding an electrostatic screen and increasing the insulation distance of the first end of C section winding, the overload capacity is optimized by increasing the wire diameter of high-voltage winding, the cross-sectional area of the core, and the number of turns of winding, and the heat dissipation is optimized by increasing the heat transfer coefficient of the side surface so that the function of increasing the insulation strength, improving the overload capacity and reducing the temperature rise can be realized, and the finite element simulation analysis is carried out. The simulation results show that the maximum field strength of the optimized grid potential transformer is reduced from 2.79kV/mm to 2.24kV/mm, which increases the end in-sulation margin; the saturation degree can be controlled within 110% under 90kV frequency withstand voltage, and the excitation current can be within the limit capacity, which effectively improves the overload capacity; the hot spot temperature is reduced from 115.7℃ to 108.8℃, and the heat dissipation capacity is improved. The simulation results confirm the rationality of the optimized design and provide a reference for engineering ap-plications.

    参考文献
    [1] 李华柏, 粟慧龙, 黄细友. 动车组高压电压互感器故障监测系统研究 [J]. 变压器, 2020, 57(12): 67-71.i Huabai, Su Huilong, Huang Shanyou. Research on Fault EMU Monitoring System of HV Potential Transformer[J]. Transformer, 2020, 57(12): 67-71.
    [2] 邓木生, 王强, 李华柏, 等. 电力机车干式高压电压互感器故障分析及预防措施 [J]. 机车电传动, 2011, (02): 63-66.eng Musheng, Wang Qiang, Li Huabai, et al. Failure analysis and preventive measures of dry high-voltage potential transformers in electric loco- motives[J]. Locomotive electric transmission, 2011(02): 63-66.
    [3] 郑殿春, 窦玉雷, 王新月, 等. 分段层式干式变压器绕组的暂态电压分布特性 [J]. 变压器, 2010, 47(06): 13-16.heng Dengchun, Dou Yulei, Wang Yueyue, et al. Transient voltage distribution characteristics of sec- tionalized layer dry-type transformer windings[J]. Transformer, 2010, 47(06): 13-16.
    [4] BOJAN T, ANA D, VIKTOR M, et al. Evaluation of Methodology for Lightning Impulse Voltage Distribution over High-Voltage Windings of Inductive Voltage Transformers [J]. Energies, 2021, 14(16).
    [5] 韩芳. 动车组干式电压互感器故障研究与预防措施 [D]; 华北电力大学, 2016.an Fang. Research and prevention measures of dry potential transformer faults in moving trains[D]. North China Electric Power University, 2016.
    [6] 姜泽岳. 动车组车载网压互感器故障机理研究 [D]; 大连交通大学, 2019.iang Zeyue. Research on the fault mechanism of onboard network potential transformer of rolling stock [D]. Dalian Jiaotong University, 2019.
    [7] 宋成虎. 电力机车过关节式电分相高压电压互感器铁磁谐振分析 [D]; 大连交通大学, 2014.ong Chenghu. Analysis of ferromagnetic resonan- ce of over-jointed electrically split phase high potential transformers in electric locomotives[D]. Dalian Jiaotong University, 2014.
    [8] 邓任任, 许冠军, 刘俊, 等. 船舶岸电变压器励磁涌流动态特性研究 [J]. 华东交通大学学报, 2021, 38(03): 111-118.eng Renren, Xu Guan, Liu Jun, et al. Dynamic characteristics of excitation inrush current of marine shore power transformers [J]. Journal of East China Jiaotong University, 2021, 38(03): 111-118.
    [9] 孙凯, 卢世蕾, 易哲嫄, 等. 面向电力电子变压器应用的大容量高频变压器技术综述 [J]. 中国电机工程学报, 2021, 41(24): 8531-8546.un K, Lu S, Yi Zelulu, et al. A review of high-capacity high-frequency transformer technology for power electronic transformer applications[J]. Chinese Journal of Electrical Engineering, 2021, 41(24): 8531-8546.
    [10] 王威望, 刘莹, 何杰峰, 等. 高压大容量电力电子变压器中高频变压器研究现状和发展趋势 [J]. 高电压技术, 2020, 46(10): 3362-3373.ang Wei-Wang, Liu Ying, He Jie-Feng, et al. Research status and development trend of high frequency transformers in high voltage high capacity power electronic transformers[J]. High Voltage Technology, 2020, 46(10): 3362-3373.
    [11] 姚静丽. JDZ-27.5W2型电压互感器绝缘特性的研究 [D]; 沈阳工业大学, 2008.ao Jingli. Study of insulation characteristics of JDZ-27.5W2 type potential transformer[D]. Shenyang University of Technology, 2008.
    [12] 刘建华, 李永新, 唐明珠. 环氧树脂浇注干式变压器局部放电原因分析和控制 [J]. 变压器, 2019, 56(03): 26-30.iu JH, Li YX, Tang MZ. Analysis and control of causes of partial discharge in epoxy resin cast dry-type transformers[J]. Transformer, 2019, 56(03): 26-30.
    [13] SEYFI, POURYA, ZAHEDI, et al. Investigation of the effects of mixed electric field stress on high voltage transformer insulation [J]. Electrical Engineering, 2022, (prepublish).
    [14] MOHAMMAD K, REZA M H, TORBJ?RN T, et al. Green Solution for Insulation System of a Medium Frequency High Voltage Transformer for an Offshore Wind Farm [J]. Energies, 2022, 15(6).
    [15] 刘永恒. 车顶电压互感器谐波传变特性研究 [D]; 北京交通大学, 2020.iu Yongheng. Research on the harmonic transmission characteristics of roof-mounted potential transformers[D]. Beijing Jiaotong University, 2020.
    [16] 王继学. 27.5kV电压互感器燃弧故障分析与强化设计 [D]; 苏州大学, 2018.ang Jixue. 27.5kV voltage transformer arcing fault analysis and strengthening design [D]; Soochow University, 2018.
    [17] 彭韬, 李九虎, 郑玉平, 等. 基于ANSOFT的电压互感器电磁特性的研究 [J]. 变压器, 2008, (12): 29-31+55.eng Tao, Li Jiuhu, Zheng Yuping, et al. Study of electromagnetic characteristics of voltage transfor- mers based on ANSOFT[J]. Transformer, 2008(12): 29-31+55.
    [18] 王建民, 田自强, 王浩名, 等. 空载过励磁下电力变压器的磁场及损耗分布研究 [J]. 变压器, 2020, 57(05): 23-28.ang JM, Tian ZQ, Wang HM, et al. Study on magnetic field and loss distribution of power transformers under no-load overexcitation[J]. Transformer, 2020, 57(05): 23-28.
    [19] 徐龙彬, 欧阳姬. 电压互感器温度场计算研究 [J]. 电子测量技术, 2019, 42(06): 52-56.u, Longbin, Ouyang, Ji. Study on the calculation of temperature field of potential transformer[J]. Electr-onic Measurement Technology, 2019, 42(06): 52-56.
    [20] 王建民, 王艺霏, 王浩名, 等. 换流变压器空载过励磁下的电磁热性能仿真研究 [J]. 变压器, 2021, 58(06): 6-12.ang Jianmin, Wang Yifei, Wang Haoming, et al. Simulation study of electromagnetic thermal performance of converter transformers under no-load overexcitation[J]. Transformer, 2021, 58(06): 6-12.
    [21] 王珊珊, 肖黎, 廖才波. 110kV环氧浇注干式变压器流体-温度场的有限元仿真计算 [J]. 变压器, 2016, 53(01): 1-5.ang Shanshan, Xiao Li, Liao Caibo. Finite element simulation calculation of fluid-temperature field of 110kV epoxy cast dry-type transformer[J]. Transformer, 2016, 53(01): 1-5.
    [22] CAO J, ZHOU H J, QIAN S X. Research on the 3D Temperature Field of Transformer Winding Based on Finite Element Analysis [J]. Advanced Materials Research, 2010, 983(129-131).
    [23] HOUYANG F, JIAN W, XUAN F, et al. Research on Simulation and Calculation of Temperature Field and Pressure of High Voltage Transformer [J]. IOP Conference Series: Earth and Environmental Science, 2021, 634(1).
    [24] 刘伟. 充气柜式35kV电压互感器的故障研究与优化设计 [D]; 大连交通大学, 2019.iu Wei. Fault study and optimal design of gas-filled cabinet type 35kV potential transformer[D]. Dalian Jiaotong University, 2019.
    [25] 马明, 孔祥宇, 张璐. 铁路车辆25 kV电压互感器直流偏磁性能试验研究 [J]. 城市轨道交通研究, 2019, 22(02): 94-97.Ma M, Kongyu, Zhang Lu. Experimental study on the DC bias magnetic performance of 25 kV potential transformers for railroad vehicles[J]. Urban Rail Transit Research, 2019, 22(02): 94-97.第一作者:高天毅(1998-),男,大连交通大学电气工程专业硕士研究生,研究方向为轨道交通牵引供电新技术,本科就读于大连交通大学电气工程及其自动化专业。E-mail:767534270@qq.com。电话:15640831769。通讯地址:辽宁省大连市沙河口区黄河路794号大连交通大学。邮政编码:116028。通信作者:金钧(1970-),男,副教授,大连交通大学自动化与电气工程学院硕士研究生导师,研究方向为轨道交通电气化与自动化。E-mail:jinjun@djtu.edu.cn
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:1738
  • 下载次数: 7049
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-05-12
  • 最后修改日期:2022-05-20
  • 录用日期:2022-05-25
  • 在线发布日期: 2023-06-21