基于改进Unet模型的混凝土裂缝分割研究
DOI:
作者:
作者单位:

1.华东交通大学交通运输学院;2.华东交通大学土木建筑学院

作者简介:

通讯作者:

中图分类号:

基金项目:

江西省主要学科学术和技术带头人培养计划,20213BCJL22039;国家自然科学(编号51968022)


Research on concrete crack segmentation based on improved Unet model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对桥梁、隧道等环境下产生的混凝土裂缝情况复杂、干扰因素多的问题,提出一种改进Unet模型(A-Unet)的裂缝检测方法。以Unet网络为基础,研究了编码器的深度如何影响模型训练时间、检测精度。其次,在解码过程中设计一种融合空间和通道注意力模块,将高分辨率的浅层特征与上采样获得的深层特征信息赋予不同权重,进一步增强裂缝特征。同时,增加dice损失函数对模型进行评价,减少因检测目标与背景数量相差较大,导致评价不准确的问题。提出方法在测试数据集中进行评价,精确度、MIou、召回率分别达到94.70%、86.16%、91.34%。A-Unet模型检测效果明显优于其他5种模型。结果表明:利用该方法检测混凝土裂缝精度得到较大提升,且节约了模型训练时间,提高检测效率。

    Abstract:

    A crack detection method based on improved Unet model (A-Unet) is proposed to solve the problems of complex concrete cracks and many interference factors in bridges, tunnels and other environments. Firstly, Unet-based network, how the deep of the encoder affects the training time and detection accuracy of the model is studied. Secondly, in the decoder process, a fusion space and channel attention module is designed to give different weights to the high-resolution shallow features and the deep feature information obtained from the up-sampling to further enhance the crack features. At the same time, the dice loss function is added to evaluate the model to reduce the problem of inaccurate evaluation caused by the large difference between the number of detected objects and the background. The proposed method was evaluated in the test data set, the Precision, MIou and Recall rate reached 94.70%, 86.16% and 91.34% respectively. Also, the detection effect of A-Unet model is significantly better than the other five models. The results show that the accuracy of concrete crack detection by this method is greatly improved, and the model training time is saved, and the detection efficiency is improved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-23
  • 最后修改日期:2023-03-31
  • 录用日期:2023-04-03
  • 在线发布日期: 2023-06-21
  • 出版日期: