基于模糊神经网络的拉索耐久性评价模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将模糊理论与神经网络技术相结合,建立了基于模糊神经网络的拉索耐久性评价模型;网络训练采用改进的梯度下降动量BP算法,经过265次学习,确定了网络各层参数值,得到了网络的收敛解;最后通过5个校验样本验证了拉索耐久性模型的正确性。研究结果表明:拉索构件的耐久性评价指标分为拉索索力、锚固系统、拉索保护层、减震装置4种;采用动态BP算法对网络进行计算时,网络的收敛速度优于常用的BP算法;训练好的模糊神经网络很好地获得并储存了评价专家的知识、经验和判断,可将网络应用于拉索构件的耐久性评价。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

刘旭政; 张春荣; 陈水生.基于模糊神经网络的拉索耐久性评价模型[J].华东交通大学学报,2010,27(2):8-12.
.[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2010,27(2):8-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-08
  • 出版日期:
关闭