基于压缩感知和字典学习的背景差分法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当使用背景差分法时,背景存在突变和渐变、图像数据的冗余和伪前景对目标检测的干扰等问题,提出一种基于稀疏表示和字典学习的背景差分法。该方法首先训练视频流得到其数据字典,并根据数据字典学习与稀疏表示理论建立背景模型,可以有效减少数据的冗余。然后根据目标及其邻域的密集度进行目标分割,以排除前景的干扰。最后再根据数据字典的更新算法,有效解决了背景的突变和渐变问题。实验结果表明,该方法具有可行性。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

郭厚焜; 吴峰; 黄萍.基于压缩感知和字典学习的背景差分法[J].华东交通大学学报,2012,29(1):43-47.
.[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2012,29(1):43-47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-08
  • 出版日期:
关闭