基于套索(Lasso)的中文垃圾邮件过滤
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    使用向量空间模型表示的文本邮件数据高维而稀疏,不利于邮件过滤分类模型的建立,通常需在分类器训练前进行维数约减。Lasso回归是一种基于l1正则化的多元线性模型,其在模型参数估计的同时实现了变量选择。提出使用Lasso回归进行垃圾邮件过滤,建立Lasso回归邮件分类模型、Lasso回归词条选择结合逻辑回归的分类模型,结合中文文本垃圾邮件数据集TREC06C进行垃圾邮件过滤实验。实验结果表明Lasso回归词条选择结合逻辑回归的邮件分类模型性能更佳。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

徐征; 刘遵雄; 张贤龙.基于套索(Lasso)的中文垃圾邮件过滤[J].华东交通大学学报,2014,(4):130-135.
.[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2014,(4):130-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-06
  • 出版日期:
关闭