基于GRNN神经网络的ZigBee室内定位算法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于固定参数的无线信号传播损耗模型的定位算法,不能很好解决由于多径传播效应和环境复杂性所带来的测距误差问题。提出使用GRNN神经网络来拟合室内RSSI值与距离值之间的映射关系,得到RSSI值与距离值的映射模型,再将定位实验中实测的RSSI值作为训练好的GRNN神经网络的输入层,在输出层得到与RSSI值相对应的距离值,最后使用加权质心算法来进行待测节点的定位。该算法不仅简单而且性能良好,并且不需要额外的硬件。经过Matlab和ZigBee实验仿真验证,与路径损耗模型和基于BP神经网络的定位算法相比,所提出的算法可以提供较好的定位结果。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

邓胡滨,许峰,周洁.基于GRNN神经网络的ZigBee室内定位算法研究[J].华东交通大学学报,2017,34(4):137-142.
.[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2017,34(4):137-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-05
  • 出版日期:
关闭