基于ARMA的滚动轴承振动数据预测
DOI:
作者:
作者单位:

作者简介:

周建民(1975—),男,教授,博士,研究方向为智能诊断,无损检测。

通讯作者:

中图分类号:

TH133

基金项目:

国家自然科学基金(51865010,51665013)


Rolling Bearing Vibration Data Prediction Based on ARMA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现对滚动轴承的振动数据预测,本文提出一种基于自回归滑动平均(ARMA)模型的预测方法。 首先截取滚动轴承全寿命周期的早期无故障数据作为样本,计算截取样本序列的自相关系数和偏相关系数,然后采用最小信息准则(AIC)对 ARMA 定阶,运用最小二乘法估计参数建立 ARMA 模型,将轴承同工况与类工况下的数据输入到已建立的 ARMA 模型中,得到的轴承预测数据与实际故障数据进行对比,计算预测的准确率。 结果表明:该方法可以准确预测轴承的实际状态,且同工况相对于类工况下的预测效果更优。

    Abstract:

    This paper presented a prediction method based on the regression sliding average (ARMA) model to achieve the vibrational data prediction of rolling bearings. Firstly, the early failure data of the full life cycle for the rolling bearings were selected as samples to calculate the autocorrelation coefficient and the deviation corre- lation coefficient of its truncated sequence. Then, the minimum information criterion (AIC) was adopted to order the ARMA model. By using the least square estimation parameter, the ARMA model was established. And the bearing data under the same and similar working conditions were input to the established ARMA model. The comparison between prediction data and the actual failure data was made to calculate the prediction accuracy. The research results show that this method can accurately predict the actual state of the bearing and the predic- tion result of the same working condition is better than that of the similar working condition.

    参考文献
    相似文献
    引证文献
引用本文

周建民,张臣臣,王发令,黎慧.基于ARMA的滚动轴承振动数据预测[J].华东交通大学学报,2018,35(5):99-103.
Zhou Jianmin, Zhang Chenchen, Wang Faling, Li Hui. Rolling Bearing Vibration Data Prediction Based on ARMA[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2018,35(5):99-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-26
  • 出版日期: