基于DSSD的接触网鸟窝识别检测研究
作者:
作者单位:

作者简介:

周俊(1992—),男,硕士研究生,主要研究方向为铁路微服务技术。

通讯作者:

中图分类号:

U225

基金项目:


Research on Recognition and Detection of Catenary Bird's Nest Based on DSSD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着中国电气化铁路里程的迅速增长,接触网的安全稳定运行面对巨大的压力,对其进行监测拥有重要意义。 针对影响电气化铁路接触网正常工作的鸟害问题进行研究,通过对不同深度学习模型进行分析比较,选择 DSSD 模型以自动识别高速铁路接触网沿线。 同时使用迁移学习的方法,运用 Caffe 平台,在数据集不足的情况下,通过微调训练好的 DSSD 网络,提高了鸟窝识别训练网络的泛化性和稳定性。 训练完的模型具有更快的识别速度和更好的鲁棒性,对于接触网安全稳定运行拥有重要的参考意义。

    Abstract:

    With the rapid growth of China's electrified railway mileage, the safe and stable operation of catenary is facing tremendous pressure, so it is of great significance to monitor. In this paper, the avian hazards affecting the normal operation of the catenary of electrified railway were studied. Through the analysis and comparison of different depth learning models, DSSD model was selected to automatically identify the catenary of high-speed railway. At the same time, this paper used transfer learning method and Caffe platform to improve the generalization and stability of bird's nest recognition training network by fine-tuning the trained DSSD network under the condition of insufficient data set. The trained model has faster recognition speed and better robustness, which has important reference significance for the safe and stable operation of OCS.

    参考文献
    相似文献
    引证文献
引用本文

周俊,陈剑云.基于DSSD的接触网鸟窝识别检测研究[J].华东交通大学学报,2019,36(6):70-78.
Zhou Jun, Chen Jianyun. Research on Recognition and Detection of Catenary Bird's Nest Based on DSSD[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2019,36(6):70-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-01
  • 出版日期:
关闭