考虑出行效用的空铁联运需求研究
作者:
作者单位:

作者简介:

吴薇薇(1972—),女,副教授,博士,研究方向为交通运输经济。E-mail:nhwei@nuaa.edu.cn。

通讯作者:

中图分类号:

U116

基金项目:


Research on Passenger Demand of Air-Rail Intermodal Transport Considering Passenger Travel Utility
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章从出行效用角度出发对空铁联运旅客需求进行研究。 结合前景理论与后悔理论提出基础效用、风险感知效用和欣喜效用,基于转换的重力模型优化效用函数,得到腹地城市-高铁-航班的旅客需求预测模型。 以南京禄口国际机场为目标机场,综合长三角机场群中旅客吞吐量大于 1 000 万的机场、距离最近的十个机场以及根据行政划分的江苏省所有机场进行空铁联运旅客需求研究。 基于 Wilson 模型提高空铁联运辐射半径的预测精度,构建腹地城市年人均出行次数与人均 GDP 的关系式,得到腹地城市的空铁联运旅客需求,并进一步根据旅客出行效用评估进行空铁联运客流分配,为机场准确识别出空铁联运需求。

    Abstract:

    This paper studies the passenger demand of air-rail intermodal transport from the perspective of travel utility. Combined with prospect theory and regret theory, it proposes basic utility, risk perception utility and gratification utility. Based on the converted gravity model, the utility function is optimized, and the passenger demand forecasting model of hinterland city-HSR-flight is obtained. Taking Nanjing Lukou International Airport as the target airport, it studies the passenger demand of air rail intermodal transportation by integrating the airports with passenger throughput greater than 10 million, the nearest ten airports and all airports in Jiangsu Province according to the administrative division. Based on Wilson model, the prediction accuracy of air rail combined transport radiation radius is improved, and the relationship between annual per capita travel times and per capita GDP of hinterland cities is constructed, and the passenger demand of air rail combined transportation in hinterland cities is obtained. Finally, according to the passenger travel utility evaluation, the air rail intermodal passenger flow distribution is carried out to accurately identify the demand for the airport.

    参考文献
    相似文献
    引证文献
引用本文

吴薇薇,徐幼婷,刘硕,林思奇,李倩茹.考虑出行效用的空铁联运需求研究[J].华东交通大学学报,2021,37(1):136-141.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-23
  • 出版日期: