基于谱元法和北方苍鹰算法的振动损伤检测
DOI:
作者:
作者单位:

1.西安交通大学航天航空学院复杂服役环境重大装备结构强度与寿命全国重点实验室,陕西西安 710049 ;2.中国飞机强度研究所强度与结构完整性全国重点实验室,陕西西安 710065 ;3.西南交通大学轨道交通运载系统全国重点实验室,四川成都 611756

作者简介:

周运来(1986—),男,博士,研究员,博士生导师。研究方向为结构优化、无损监测。E-mail:yunlai.zhou@xjtu.edu.cn。

通讯作者:

中图分类号:

TP273

基金项目:

陕西省自然科学基础研究计划-面上项目(2023-JC-YB-007)


Vibration Damage Detection Based on the Spectral Element Method and Northern Goshawk Optimizer Algorithm
Author:
Affiliation:

1.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi′an Jiaotong University, Xi′an 710049 , China ;2.National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Research Institute of China, Xi′an 710065 , China ; 3.State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 611756 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的】为了解决结构损伤检测中有限元法建模不精确和计算成本高的问题,提出了一种结合谱元法与北方苍鹰优化算法(NGO)的结构健康监测(SHM)技术。【方法】首先,采用谱元法建立结构的频响函数,并应用于结构的损伤定位与损伤检测目标函数的构造,将损伤检测划分为两阶段问题,以降低算法优化维度和检测复杂性。其次,引入北方苍鹰优化算法 (NGO),对目标函数进行优化求解。最后,以平面桁架结构和ASCEBenchmark结构为研究对象,利用NGO、粒子群优化 (PSO)和蚁狮优化(ALO)算法对其各种损伤工况进行损伤检测性能对比。【结果】结果表明,在低维度和简单结构中,NGO, PSO和ALO算法均表现出良好的求解能力;但在高维度和大型复杂结构中,NGO相较于PSO和ALO算法具有更高的损伤检测能力和鲁棒性。【结论】改进后的方法提高了损伤检测数值建模的精度。

    Abstract:

    Objective】To address the issues of imprecise modeling and high computational cost in structural damage detection using the finite element method (FEM), this study proposes a structural health monitoring (SHM) technique that combines the spectral element method (SEM) with the Northern Goshawk Optimization (NGO) algorithm.【Method】Firstly, the spectral element method was used to establish the frequency response function of the structure, which was then applied to construct the objective function for damage localization and detection. This approach divided the damage detection problem into two stages, reducing the optimization dimension and complexity. Secondly, NGO algorithm was introduced to optimize and solve the objective function. Finally, planar truss structure and ASCE Benchmark Structure were used as case studies to compare the damage detection performance of NGO, Particle Swarm Optimization (PSO), and Ant Lion Optimization (ALO) algorithms under various damage cases.【Result】The results show that for low-dimensional and simple structures, NGO, PSO, and ALO algorithms all exhibit good solving capabilities. However, for high-dimensional and large complex structures, NGO demonstrates superior damage detection capability and robustness compared to PSO and ALO.【Conclusion】The improved method enhances the accuracy of numerical modeling in damage detection.

    参考文献
    相似文献
    引证文献
引用本文

周运来,姚峰,白春玉,等.基于谱元法和北方苍鹰算法的振动损伤检测[J].华东交通大学学报,2024,41(5):29-38.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-26
  • 出版日期: