道路交通事故严重程度预测及致因分析
DOI:
作者:
作者单位:

1.华东交通大学交通运输工程学院,江西南昌 330013 ;2.南昌交通学院交通运输学院,江西南昌 330044

作者简介:

严利鑫(1988—),男,博士,副教授,博士生导师,研究方向为智能网联汽车关键技术,交通安全及事故致因分析。E-mail:yanlixinits@163.com。

通讯作者:

中图分类号:

U491.31

基金项目:

国家自然科学基金项目(52162049,51805169);赣鄱俊才支持计划-主要学科学术和技术带头人培养项目(20232BCJ23012);华东交通大学创新创业教育研究课题(23hict05)


RoadTrafficAccident Severity Prediction and CausationAnalysis
Author:
Affiliation:

1.School ofTransportation Engineering, East China Jiaotong University, Nanchang 330013 ,China ; 2.College ofTransportation, NanchangJiaotongInstitute, Nanchang 330044 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的】为提高交通事故严重程度预测的准确性,明晰事故严重程度的关键影响因素。【方法】从885起道路交通事故案例数据中选取影响交通事故严重程度的人、车、路、环境四方面共14个因素,采用融合通道注意力的卷积神经网络(CA-CNN)构建事故分类预测模型。在此基础上,采用边际效用方法分析得出交通事故严重程度的显著影响因素。【结果】结果表明,相较于卷积神经网络(CNN)、随机森林(RF)、朴素贝叶斯(NaiveBayes)、回归分析(Logistics)、决策表(Decision_table)、引导聚集算法(Bagging)6种预测模型,CA-CNN 模型在准确率、查准率、召回率等指标评价下,整体预测性能更优;在交通事故严重程度的影响因素中,季节、是否工作日、道路类型、事故形态、是否违法变更车道、未按规定让行及制动不当7个因素具有显著性(p≤0.05)。【结论】CA-CNN是一种有效的交通事故严重程度预测模型,其分析结果有助于降低交通事故发生率和严重程度。

    Abstract:

    Objective】To improve the accuracy of predicting the severity of traffic accidents and clarify the key in fluencing factors of traffic accident severity.【Method】Fourteen factors related to people, vehicles, roads, and envi ronment that affect traffic accident severity were selected from 885 road traffic accident case data, and a traffic acci dent classification prediction model was constructed using a convolutional neural network with channel attention (CA-CNN). On this basis, the significant influencing factors of traffic accident severity were analyzed using the method of marginal utility.【Result】The results show that compared with the 6 prediction models such as convolu tional neural network (CNN), random forest (RF), NaiveBayes, logistics regression (Logistics), decision table (De cision_table), and bagging algorithm (Bagging), the convolutional neural network model with channel attention fu sion has better overall prediction performance in terms of accuracy, precision, and recall, etc. Among the influenc ing factors of traffic accident severity, the season, whether it is a workday, road type, accident type, illegal lane change, failure to yield, and improper braking have significant effects (p≤0.05).【Conclusion】CA-CNN is an effec tive traffic accident severity prediction model, and the analysis results are helpful in reducing the incidence and se verity of traffic accidents.

    参考文献
    相似文献
    引证文献
引用本文

严利鑫,胡鑫辉,刘清梅,等.道路交通事故严重程度预测及致因分析[J].华东交通大学学报,2024,41(5):65 73.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-26
  • 出版日期: