基于改进YOLOv7算法的复杂场景烟雾检测研究
DOI:
作者:
作者单位:

1.华东交通大学信息工程学院,江西 南昌 330013 ;2.江西科技师范大学江西省光电子与通信重点实验室,江西 南昌 330038 ;3.江西科技师范大学信息与机电工程学院,江西 南昌 330038

作者简介:

占华林(1980—),男,副教授,硕士生导师,博士研究生。研究方向为人工智能、嵌入式开发。E-mail:james392@163.com。

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(62172160,62061019)


Research on Smoke Detection in Complex Scenes Based on Improved YOLOv7 Algorithm
Author:
Affiliation:

1.School of Information Engineering, East China Jiaotong University, Nanchang 330013 , China ; 2.Jiangxi Key Laboratory ofOptoe-lectronics and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038 , China ; 3.School ofInformation and Mechatronics Engineering, Jiangxi Science and Technology Normal University, Nanchang 330038 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的】旨在解决复杂场景中目标烟雾失检、检测精度低的问题。【方法】基于YOLOv7算法基础上进行优化改进,将原模型Neck部分的PAFPN结构替换为渐近式特征金字塔结构AFPN并引入ECIoU作为目标回归损失函数,在自构建数据集SMdatase和Pycharm平台上进行验证。【结果】实验结果表明:改进后的算法准确率比原YOLOv7模型提高了1.3%,达到68.6%, 平均精度均值(mAP)比原YOLOv7模型提升了1.8%,达到64.6%,且改进后算法的计算复杂度仅有82.5 GFLOPs,比原YOLOv7模型下降了27.4%。【结论】提出的基于改进YOLOv7算法,既能降低网络计算复杂度又能提升检测精度,为复杂场景烟雾检测的后续研究提供了新思路。

    Abstract:

    Purpose】In order to solve the problems of target smoke misdetection and low detection accuracy in complex scenes.【Method】Improve and optimize the YOLOv7 algorithm which was on the current best performing object detector, replaces the PAFPN structure in the Neck part of the original model with the asymptotic feature pyramid structure AFPN and uses ECIoU as the objective regression loss function, and verifies it on the selfconstructed dataset SM-datase and Pycharm platform.【Result】Experimental results show that the accuracy of the improved algorithm was increased by 1.3% to 68.6% compared with the original YOLOv7 model, the average accuracy mAP is increased by 1.8% to 64.6% compared with the original YOLOv7 model, and the computational complexity of the improved algorithm is only 82.5 GFLOPs, which was 27.4% lower than that of the original YOLOv7 model.【Conclusion】Based on the improved YOLOv7 algorithm, the algorithm proposed in this paper can not only reduce the computational complexity of the network but also improve the detection accuracy in complex scenes, which provides a new idea for the follow-up research of smoke detection in complex scenes.

    参考文献
    相似文献
    引证文献
引用本文

占华林,聂子俊,姜楠,罗磊.基于改进YOLOv7算法的复杂场景烟雾检测研究[J].华东交通大学学报,2024,41(6):58-64.
Zhan Hualin, Nie Zijun, Jiang Nan, Luo Lei. Research on Smoke Detection in Complex Scenes Based on Improved YOLOv7 Algorithm[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2024,41(6):58-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期: