基于改进RetinaNet的遥感图像目标检测算法
DOI:
作者:
作者单位:

1.华东交通大学信息与软件工程学院,江西 南昌 330013 ;2.萍乡学院数学与计算机学院,江西 萍乡 337055

作者简介:

程路(2000—),男,硕士研究生,研究方向为目标检测。E-mail:2459650517@qq.com。

通讯作者:

中图分类号:

TP753

基金项目:

国家自然科学基金项目(62461026);江西省自然科学基金面上项目(20232BAB203057)


Remote Sensing Image Object Detection Algorithm Based on Improved RetinaNet
Author:
Affiliation:

1.School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013 , China ;2.College of Mathematics and Computer Science, Pingxiang University, Pingxiang 337055 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的】针对通用目标检测器直接应用于遥感图像检测效果不佳的问题,提出了一种基于改进RetinaNet 的遥感图像目标检测算法。【方法】算法结合了下采样块和卷积核动态选择的优势。首先,该模型在基础特征提取网络ResNet50上引入一个改进的下采样模块,对特征进行多种下采样处理;然后,采用卷积核选择机制动态选择空间感受野,以此对多尺度的语义信息进行建模;最后,得到目标物体的分类和回归结果。【结果】实验结果表明,该方法在大规模遥感图像目标检测数据集DOTA上的平均精度均值(mAP)比原RetinaNet网络提升了3.2个百分点。【结论】通过引入下采样模块和动态选择卷积核大小的机制在一定程度上改进了对多尺度遥感目标的识别能力。

    Abstract:

    Objective】Aiming at the problem that the general target detector is not directly applied to remote sensing image detection, a remote sensing image target detection algorithm based on improved RetinaNet is proposed. [Method] The algorithm combines the advantages of dynamic selection of down-sampling blocks and convolution kernels. Firstly, the improved downsampling module (IDM) on the base feature extraction network ResNet50 was introduced, which performed multiple down-sampling processing on features. Then the spatial receptive field was dynamically selected by using the convolution kernel selection mechanism to model the multiscale semantic information of the scene. Finally, the classification and regression results of the target object were obtained.【Result】Experimental results show that the proposed method improves mAP by 3.2 percentage points on the large-scale remote sensing image object detection dataset DOTA compared to the orignal RetinaNet network.【Conclusion】The mechanism of introducing a downsampling module and dynamically selecting the size of the convolution kernel has improved the recognition ability of multi-scale remote sensing targets to a certain extent.

    参考文献
    相似文献
    引证文献
引用本文

程路,刘家伟,周庆忠,郑宇超,刘伟.基于改进RetinaNet的遥感图像目标检测算法[J].华东交通大学学报,2024,41(6):74-80.
Cheng Lu, Liu Jiawei, Zhou Qingzhong, Zheng Yuchao, Liu Wei. Remote Sensing Image Object Detection Algorithm Based on Improved RetinaNet[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2024,41(6):74-80

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-10
  • 出版日期: