地铁振动源强离散特征分析及预测方法研究
DOI:
作者:
作者单位:

1.北京东方雨虹防水技术股份有限公司,北京 101111 ;2.北交振安轨道科技(北京)有限公司,北京 101111 ;3.中国地质大学(武汉)工程学院,湖北 武汉 430074

作者简介:

陈嘉梁(1989—),男,博士,研究方向为交通环境振动与噪声。E-mail:chen_galeon@tsinghua.edu.cn。

通讯作者:

中图分类号:

TB533+.2;X827

基金项目:

国家自然科学基金项目(51508431);住房和城乡建设部科学技术计划项目(2022-K-153)


Analysis of Discrete Characteristics and Prediction Method for Subway Vibration Source Strength
Author:
Affiliation:

1.Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 101111 , China ; 2.Beijing Jiaotong Zhen’an Rail Technology(Beijing) Co., Ltd., Beijing 101111 , China ; 3.School of Engineering, China University of Geosciences, Wuhan 430074 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章对国内多个城市的52个典型地下隧道断面进行了运营期全天连续振动源强测试。基于实测数据集,分析了地铁振动源强的离散性特征及主要影响因素,探讨了离散特性下振动源强的评价方法,提出了基于多层感知器神经网络模型的地铁振动源强预测方法。实测地铁振动源强的离散程度可达20 dB。列车趟次取值对振动源强的稳定性影响很大,采用5趟次和20趟次计算源强平均值,其波动幅度分别达4.5,2.2 dB,而100趟次下波动幅度仅为0.3 dB。车轮不圆度是影响振动源强离散性的主要因素,文章提出的基于多层感知器神经网络的预测模型能较好实现地铁振动源强的预测。

    Abstract:

    The influential factors, assessment method, and prediction method for the discrete characteristics of subway vibration source strength were investigated through discrete characteristic analysis. All-day vibration source strength was monitored at 52 typical test sections in subway tunnels under operational conditions in several Chinese cities. The discrete characteristics and main influential factors of the vibration source strength were analyzed. Based on these data, an MLP neural network prediction method was proposed to estimate the subway vibration source strength. The fluctuation amplitude of the measured maximum Z-weighted vibration level exceeds 20 dB. The number of trials employed significantly affects the stability of the assessed vibration source strength. The fluctuation amplitude is 4.5 dB and 2.2 dB for 5 and 20 trains pass-by events, whereas the value reduces to 0.3 dB when 100 trials are adopted. The out-of-roundness of wheels is the main factor that leads to the discreteness of measured vibration levels. Moreover, the proposed MLP neural network prediction method shows high accuracy in predicting the subway vibration source strength.

    参考文献
    相似文献
    引证文献
引用本文

陈嘉梁,何卫,孙从博,等. 地铁振动源强离散特征分析及预测方法研究[J]. 华东交通大学学报,2025,42(5): 30-37.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-25
  • 出版日期:
关闭