轴对称弹性体扭转问题的完全光滑有限元法
DOI:
作者:
作者单位:

华东交通大学土木建筑学院,江西 南昌 330013

作者简介:

通讯作者:

陈莘莘(1975—),男,教授,研究方向为计算力学与结构仿真。E-mail:chenshenshen@tsinghua.org.cn。

中图分类号:

O343

基金项目:

国家自然科学基金项目(12172131,12162014);江西省主要学科学术和技术带头人培养计划(20225BCJ22010)


A Fully Smoothed Finite Element Method for Torsion Problems of Axisymmetric Elastic Body
Author:
Affiliation:

School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章提出一种求解轴对称弹性体扭转问题的完全光滑有限元法。由于几何形状和边界条件的轴对称性,轴对称弹性体扭转问题的计算只需选取一个截面进行网格划分和分析。为了克服对网格畸变敏感的数值缺陷,在三角形单元的基础上进一步形成边界光滑域,然后在每个光滑域内对应变进行光滑操作。结合光滑应变技术和光滑积分伪弱形式,将形函数偏导项和非偏导项的光滑域积分简化为光滑域边界积分,彻底摆脱坐标映射和雅可比矩阵的计算。数值算例结果表明,该方法即使对不规则单元也可取得较好的计算精度。

    Abstract:

    A fully smoothed finite element method to solve the torsion problem of axisymmetric elastic body is proposed. Due to axial symmetry of geometry and boundary conditions, computing the torsion problem of axisymmetric elastic body requires extracting one cross section for meshing and analysis. In order to address the problem of high sensitivity to mesh distortion, the edge-based smoothing domains are further constructed based on the triangular mesh and smoothing operations are performed on the strain in each smoothing domain. The smoothing strain technique is combined with the quasi-weak form of smoothed integral for treatment of the partial derivative and non-partial derivative of shape functions. Accordingly, all the smoothed domain integrals can be simplified as boundary integrals of the smoothing domains and there is no need for the coordinate mapping and calculation of Jacobian matrix. Numerical examples demonstrate that the proposed method for the torsion problems of axisymmetric elastic body can produce accurate solutions even for irregular elements.

    参考文献
    相似文献
    引证文献
引用本文

陈莘莘,丁立才,李庆华. 轴对称弹性体扭转问题的完全光滑有限元法[J]. 华东交通大学学报,2025,42(5): 121-126.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-25
  • 出版日期:
关闭